## Complexes of (ω-diphenylphosphinoalkyl)diphenylphosphine sulfides with silver nitrate in pyridine

E. I. Matrosov,\* Z. A. Starikova, A. I. Yanovsky, D. I. Lobanov, I. M. Aladzheva, O. V. Bykhovskaya, T. A. Mastryukova, and M. I. Kabachnik<sup>†</sup>

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation.
Fax: +7 (095) 135 5085. E-mail: mastr@ineos.ac.ru

The behavior of the phosphine-phosphine sulfide complexes of silver,  $\{Ph_2P(S)(CH_2)_nPh_2\}_m \cdot AgNO_3$  (n=2 or 4; m=1 or 2), in pyridine was studied. Dissolution of the 1:1 complexes in pyridine leads to destruction of their dimeric structures  $Ag_2[Ph_2P(S)(CH_2)_nPh_2]_2(NO_3)_2$  (A) to form the complexes  $Ag_{py}^+ - P(Ph_2)(CH_2)_nPh_2P=S$  and  $Ag_{py}^+ - S=Ph_2(CH_2)_nPh_2$ . The solid complexes isolated from pyridine restore dimeric structure A. According to the data of X-ray diffraction analysis, the 1:2 complex isolated from pyridine has the structure  $[S=P(Ph_2)(CH_2)_2(Ph_2)P-(NO_3)Ag(Py)-P(Ph_2)(CH_2)_2(Ph_2)P=S]Py$ . According to the data of IR spectroscopy, dissolution of this complex in chloroform leads to the formation of the dimeric structure  $Ag_2[Ph_2P(S)(CH_2)_2PPh_2]_4(NO_3)_2$ .

Key words: silver complexes, phosphine-phosphine sulfides; 1R spectra; 31P NMR spectra; X-ray structural analysis.

Complexation in nonaqueous media is often accompanied by the formation of solvate complexes.<sup>1</sup> These complexes are clearly manifested in electronic and vibrational spectra of salts of different metals in coordinating solvents.<sup>1-4</sup> In particular, the formation of pyridine complexes of  $CoCl_2$  in various solvents has been studied, <sup>1</sup> and complexes containing the  $Co(Py)_nCl_2$  fragments (n = 1 or 2) were detected in acetone.

In this connection, we noticed that 1:1 phosphinephosphine sulfide complexes of silver, which we have studied previously<sup>5</sup> and which are insoluble in the usual organic solvents, are readily soluble in pyridine. It was believed that dissolution of these complexes in pyridine is also associated with the formation of solvate complexes.

Therefore, in this work we studied the behavior of the complexes of  $AgNO_3$  with phosphine-phosphine suifides  $Ph_2P(S)(CH_2)_nPPh_2$  (n=2 ( $L^1$ ) or 4 ( $L^2$ )) by <sup>31</sup>P NMR and IR spectroscopy and by X-ray diffraction analysis.

## Results and Discussion

1:1 Complexes. Previously, the complex Ag(L<sup>1</sup>)NO<sub>3</sub> (1) was studied<sup>5</sup> by X-ray diffraction analysis, and it was demonstrated that 1 has dimeric structure A.

involved in coordination to silver. In agreement with this fact, the IR spectrum of solid complex 1 has a band corresponding to the coordinated P=S group at 595 cm<sup>-1</sup> ( $\Delta v = 20$  cm<sup>-1</sup>) and two bands corresponding to the coordinated NO<sub>3</sub> groups at 1390 and 1295 cm<sup>-1</sup>.6

With the aim of revealing the effect of the solvent on the structures of the 1:1 complexes, we dissolved complexes 1 and Ag(L²)NO<sub>3</sub> (2) in pyridine and immediately isolated them in the solid state. Like the spectra of the initial complexes 1 and 2, the IR spectra of the resulting complexes have an absorption band of the coordinated P=S group at 595 cm<sup>-1</sup> and bands of the coordinated NO<sub>3</sub> group at 1390 and 1300 cm<sup>-1</sup> (Table 1). The data of elemental analysis of the resulting and initial complexes coincide. Consequently, complexes that are analogous in structure and composition to the initial compounds were isolated from freshly prepared solution of the complexes of 1:1 composition.

The IR spectra of solutions of complexes 1 and 2 in pyridine were examined, and the results were compared with the spectra of these compounds in the solid state (see Table 1). The IR spectra of solutions of complexes 1 and 2 in pyridine have a band at 615 cm<sup>-1</sup> corresponding to the free P=S group along with a band at 595 cm<sup>-1</sup> corresponding to the coordinated P=S. The intensities of these bands are approximately equal. One absorption band of free NO<sub>3</sub> groups<sup>7</sup> (1355 cm<sup>-1</sup>) in the spectra of solutions of the complexes in pyridine corresponds to intense absorption bands of coordinated NO<sub>3</sub> groups<sup>6</sup> (1390, 1385, 1310, and 1295 cm<sup>-1</sup>) in the spectra of the solid complexes. From these data it may be concluded that the

<sup>\*</sup> Deceased.

Table 1. Vibration frequencies of the P=S and NO<sub>3</sub> groups in the IR spectra of complexes 1 and 2 in the solid phase and in pyridine

| Complex                                | Phase                | v(P=S)   | $v(NO_3)$  |
|----------------------------------------|----------------------|----------|------------|
|                                        |                      | cm       | -1         |
| $Ag(L^1)NO_3$ (1)                      | Solid<br>Solution in | 595      | 1390, 1295 |
|                                        | pyridine             | 615, 595 | 1355       |
| Ag(L <sup>2</sup> )NO <sub>3</sub> (2) | Solid<br>Solution in | 595      | 1385, 1310 |
|                                        | pyridine             | 615, 595 | 1355       |

Note. 
$$L^1 = Ph_2P(S)(CH_2)_2PPh_2$$
,  
 $L^2 = Ph_2P(S)(CH_2)_4PPh_2$ .

partial (structure B) or complete cleavage of dimeric ring A occurs in pyridine to form monomeric complexes of types C and D accompanied by the replacement of coordinated NO<sub>3</sub> groups by solvent molecules. Because the initial complexes 1 and 2 were isolated from pyridine, the conversion of the 1:1 complexes can be represented by Scheme 1 (the Ph groups in structures C and D and hereinafter are omitted for clarity).

The  $^{31}P$  NMR spectra of solutions of the free ligands  $L^1$  and  $L^2$  in pyridine, like those in  $CH_2Cl_2$ , 8 show two narrow signals. The first signal (at  $\delta = 13.23$  and -16.03 for  $L^1$  and  $L^2$ , respectively) corresponds to  $P^{III}$ , and the second signal (at  $\delta$  44.83 and 42.74, respectively) corresponds to  $P^V$  (Table 2). In the spectrum of the ligand  $L^1$ , the doublet splitting of the signals for  $P^{III}$  and  $P^V$  with the spin-spin coupling constant  $J_{PP} = 49.7$  Hz is

Table 2, <sup>31</sup>P NMR spectra of the ligands and their 1:1 complexes with AgNO<sub>3</sub> in pyridine

| Compound                                                                               | δP <sup>HI</sup> | Δô    | δPV   | Δδ   | J <sub>PP</sub> /Hz |
|----------------------------------------------------------------------------------------|------------------|-------|-------|------|---------------------|
| Ph <sub>2</sub> P(S)(CH <sub>2</sub> ) <sub>2</sub> PPh <sub>2</sub> (L <sup>1</sup> ) | ) -13.23         |       | 44.83 | _    | 49.7                |
|                                                                                        | +8.39            | 21.62 | 45.28 | 0.45 | 41.7                |
| $Ph_2P(S)(CH_2)_4PPh_2$ (L <sup>2</sup> )                                              | -16.03           |       | 42.74 |      | 0                   |
| $Ag(L^2)NO_3(2)$                                                                       | +2.51            | 18.54 | 44.07 | 1.33 | 0                   |
| $Ag(L^2)NO_3 + 2 L^2$                                                                  | 0.85             | 15.18 | 43.49 | 0.75 | 0                   |

observed. In the spectra of complexes 1 and 2 in pyridine, the signals are shifted downfield:  $\Delta \delta = 21.62$  and 18.54 (P<sup>III</sup>) and  $\Delta \delta = 0.45$  and 1.33 (P<sup>V</sup>) for 1 and 2, respectively. This indicates that the P<sup>III</sup> atom and the P=S group are involved in coordination to Ag<sup>+</sup> ions. This fact coupled with the data of IR spectroscopy indicate that various complexes of types B, C, and D containing the Ag<sup>+</sup>—P<sup>III</sup> and Ag<sup>+</sup>—S=P coordination bonds are present in pyridine solutions.

In complexes C and D, only one coordination center of the ligand ( $P^{III}$  or P=S) is coordinated to the Ag atom. In the  $^{31}P$  NMR spectra of solutions of complexes 1 and 2 in pyridine, signals for the free P=S group and for the free  $P^{III}$  atom are absent, which may be associated with the ligand exchange in the complexes in solutions. To confirm this suggestion, we measured the  $^{31}P$  NMR spectrum of a mixture of complex 2 and two equivalents of the ligand  $L^2$  in pyridine. The spectrum has two narrow signals at  $\delta$  =0.85 ( $P^{III}$ ) and 43.49 (P=S) (see Table 2), which are slightly shifted upfield compared to those in the spectrum of the initial complex 2. In the spectrum of the mixture, signals of the free ligand are absent, which is indicative of the rapid ligand exchange in the systems under study.

1:2 Complexes. Previously,<sup>5</sup> it has been demonstrated that the formation of 1:2 complexes is associated with the replacement of two NO<sub>3</sub> groups in structure A by two ligand molecules. Thus, compared to the spectrum of complex 1, the IR spectrum of the solid complex Ag<sub>2</sub>(L<sup>1</sup>)<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub> (4) (Table 3, see Table 1) has a low-intensity band at 615 cm<sup>-1</sup>, which corresponds to free P=S groups, along with a band at 595 cm<sup>-1</sup> corresponding to coordinated P=S groups. Vibrations of the NO<sub>3</sub> groups in the spectrum of complex 4 are represented by one intense band at 1380 cm<sup>-1</sup> typical of free NO<sub>3</sub>— anions.<sup>7</sup> These spectral data suggest an unsymmetrical coordination of the "outer" ligands in complex 4 (structure E).

| Table 3. Vibration frequencies of the P=S and NO <sub>3</sub> groups in the IR spectra of complexes 3 |
|-------------------------------------------------------------------------------------------------------|
| and 4 in the solid phase, in pyridine, and in chloroform                                              |

| Complex                                     | Phase                   | v(P=S)          | v(NO <sub>3</sub> ) |
|---------------------------------------------|-------------------------|-----------------|---------------------|
|                                             |                         | cm <sup>-</sup> | 1                   |
| Ag[Ph2P(S)(CH2)2PPh2J2NO3Py (3)             | Solid<br>Solution in    | 615             | 1390, 1310          |
|                                             | pyridine<br>Solution in | 615, 595 (w)    | 1380                |
|                                             | CHCl <sub>3</sub>       | 615 (w), 590    | 1350                |
| $Ag_2[Ph_2P(S)(CH_2)_2PPh_2]_4(NO_3)_2$ (4) | Solid<br>Solution in    | 615 (w), 595    | 1380                |
|                                             | pyridine<br>Solution in | 615, 595 (w)    | 1380                |
|                                             | CHCl <sub>3</sub>       | 615 (w), 590    | 1350                |

In this work, the crystal structure of the complex  $\{Ag[Ph_2P(S)(CH_2)_2PPh_2]_2NO_3Py\}Py$  (3), which was isolated from a pyridine solution, was established by X-ray diffraction analysis (Fig. 1). The complex consists of  $[Ag(L^1)_2Py]^+$  cations,  $NO_3^-$  anions, and pyridine molecules of solvation. The anions and cations are linked in isolated contact ion pairs F through weak  $Ag...O(NO_3^-)$  interactions.

Unlike the structure of the dimer  $[Ag_2(L^1)_2](NO_3)_2$ A studied previously<sup>5</sup> in which the Ag atoms are coordi-

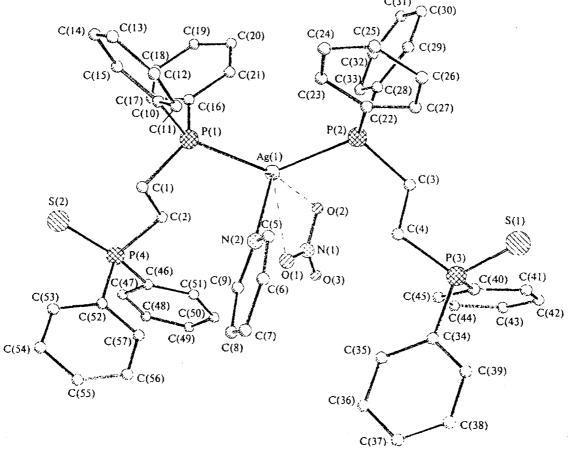



Fig. 1. Structure of the complex {Ag[Ph2P(S)(CH2)2PPh12NO3Py}Py (3); the pyridine molecule of solvation is omitted.

nated by the P=S group and the PIII atom, the Ag atom in complex 3 is coordinated only by the PIII atoms (see Fig. 1) The Ag(1)-P(1) and Ag(1)-P(2) bond lengths (2.431(2) and 2.455(2) A, respectively) agree with the mean value of the Ag-PPh<sub>2</sub>Me bond (2.438 Å). The Ag(1)-N(2) bond length (2.489(5) Å) is larger than the mean value of the Ag-N(Py) bond length (2.228-2.331 Å)9 but it is similar to the mean length of the bond between the Ag atom and secondary amines NHR<sub>2</sub> (2.483 Å). The Ag atom forms two weak Ag-O(NO<sub>3</sub><sup>-</sup>) contacts. The Ag(1)—O(1) and Ag(1)—O(2) distances are 2.664(13) and 2.780(12) A, respectively. The Ag(1) atom is located at the vertex of the substantially flattened trigonal pyramid. The Ag(1) atom deviates from the P(1)P(2)N(2) plane toward the NO<sub>3</sub> ion by 0.490(2) A. The Ag...NO<sub>3</sub><sup>-</sup> interaction in complex 3 is rather weak; the Ag-O distance is substantially larger than the mean value for the  $\eta^2$ -coordinated NO<sub>3</sub><sup>-1</sup> ion  $(2.555 \text{ Å})^9$  and is somewhat larger than the corresponding distances in structure A (2.587 and 2.671 Å) in which the analogous  $\eta^2$ -coordination of the NO<sub>3</sub><sup>-</sup> ion is observed. However, as in the case of other complexes in which the widely occurring bidentate-chelate mode of coordination of the NO<sub>3</sub><sup>-</sup> anion is realized, the abovementioned interaction involves, apparently, a certain contribution of a partially covalent directed interaction. Therefore, the formation of the contact ion pair in the structure of 3 is beyond doubt. The NO<sub>3</sub><sup>-</sup> ion is located above the Ag(1) atom (the dihedral angle between the plane of this ion and the P(1)P(2)N(2) plane is  $82.4(7)^{\circ}$ ) and is oriented so that the O(1) and O(2) atoms are located above the Ag(1)-N(2) and Ag(1)-P(2) bonds, respectively.

Both independent ligands L1 (L' and L") adopt very similar conformations. Only slight differences in the torsion angles are observed: the Ag(1)-P(1)-C(1)-C(2), P(1)-C(1)-C(2)-P(4), and C(1)-C(2)-P(4)-S(2)angles in the ligand L' are 60.1(5)°, 169.9(4)°, and -54.8(6)°, respectively, and the analogous Ag(1)-P(2)-C(3)-C(4), P(2)-C(3)-C(4)-P(3), and C(3)-C(4)-P(3)—S(1) angles in the ligand L" are 50.2(6)°, 163.6(4)°, and  $-64.5(6)^{\circ}$ , respectively. In the  $[Ag(L^{1})_{2}Py]^{+}$  cation, the ligands L' and L" are related to each other by a twofold pseudoaxis passing through the Ag(1) atom and the midpoints of the P(1)...P(2) and P(3)...P(4) distances. The symmetry is distorted mainly due to slight differences in the angles of rotation of the Ph rings about the P-C(Ph) bonds. The dihedral angles between the Ag(1)P(1)C(1) plane and the planes of the C(10)-C(15)and C(16)—C(21) rings in the ligand L' are 67.6° and 51.2°, respectively. The angles between the Ag(1)P(2)C(3) plane and the C(28)-C(32) and C(22)-C(27) rings in the ligand L" are 77.8° and 48.4°, respectively. Analogously, the orientations of the Ph rings with respect to the PSC plane in both ligands are slightly different. The dihedral angles between the P(4)S(2)C(2) plane and the C(46)-C(51) and C(52)-C(57) rings are 51.2° and 64.0° in L' and 53.9° and 55.5° in L", respectively. These differences, like the differences in the conformations of the ligands, are apparently due to the packing effects determined primarily by steric requirements of the arrangement of the coordinated NO<sub>3</sub><sup>-</sup> ions and pyridine molecules in the cavity between the ligands.

Complex 3 is readily soluble in pyridine and chloroform. The IR spectra of complex 3 in these solvents were examined, and the results were compared with the spectra of the complex  $Ag_2(L^1)_4(NO_3)_2$  (4) (see Table 3). The IR spectrum of complex 3 in pyridine, unlike the spectrum of the solid sample, has a low-intensity band at 595 cm<sup>-1</sup> corresponding to the coordinated P=S group. One band at 1380 cm<sup>-1</sup> corresponding to the free NO<sub>3</sub> group<sup>7</sup> is observed in the spectrum of the solution instead of two intense bands at 1390 and 1310 cm<sup>-1</sup> corresponding to the coordinated NO<sub>3</sub> group,6 which are observed in the spectrum of the solid sample. These data indicate that dissolution of complex 3 in pyridine is accompanied by its dissociation so that complex F is converted into complex G, and unsymmetrical complex H is formed due to the ligand exchange in the solution.

$$S = P \qquad P - Ag^{+}_{Py} - P \qquad P = S$$

$$G$$

$$S = P \qquad P - Ag^{+}_{Py} - S = P \qquad P$$

The IR spectra of solid complexes 3 and 4 are different but the spectra of their solutions in pyridine are identical. From this fact it follows that dissolution of complex 4 in pyridine is accompanied by destruction of dimeric structure E to form complexes G and H.

Dissolution of complex 3 in CHCl3 leads to a decrease in the intensity of the absorption band of free P=S groups (615 cm<sup>-1</sup>) and to the appearance of the band of coordinated P=S groups (590 cm<sup>-1</sup>) (see Table 3). One band at 1350 cm<sup>-1</sup> corresponding to free NO3 groups7 is observed in the IR spectrum of the solution of 3 instead of two intense bands at 1390 and 1310 cm<sup>-1</sup>, which are observed in the IR spectrum of solid complex 3. On the whole, the spectrum of complex 3 in CHCl<sub>3</sub> is similar to the spectrum of complex 4 (see Table 3). In addition, a solution of complex 3 in CHCl<sub>3</sub> yielded a solid complex whose IR spectrum is identical to that of complex 4. Therefore, complex 3 in CHCl<sub>3</sub> restores dimeric structure E. Conversions of the 1:2 complexes that occur when the aggregative state or the solvent is changed can be represented by Scheme 2.

The <sup>31</sup>P NMR spectra of solutions of the ligand L<sup>1</sup> in CHCl<sub>3</sub> and pyridine are little different. They have narrow signals at  $\delta = 13$  and 45 for P<sup>III</sup> and P<sup>V</sup>, respectively. The signals occur as doublets with the spin-spin coupling constant  $J_{PP} = 49.5$  Hz (Table 4). Upon for-

mation of complex 3 in pyridine, both signals are shifted downfield with retention of the doublet splitting  $(J_{pp} =$ 38.5 Hz). In the spectra of complexes 3 and 4 in  $CHCl_3$ , the signals for  $P^{III}$  and  $P^V$  are also shifted downfield. However, the doublet splitting of the signals is retained only for  $P^{V}$  ( $J_{PP} = 16.1$  (3) and 21.7 Hz (4)), while one signal with the value  $\Delta_{1/2} \approx 180$  Hz is observed for P<sup>III</sup> (see Table 4). Apparently, this broadening of the signals for P<sup>III</sup> is due to the "outer" ligand exchange in structure E. Interestingly, in the spectrum of complex 3 in pyridine, the signal for PV is shifted by 0.63 ppm, while in the spectrum of complex 3 in CHCl<sub>3</sub>, this signal is shifted by 1.56 ppm (see Table 4). This difference in the values of  $\Delta\delta$  reflects the change in the structure of the complex in pyridine (structures G and H) and in CHCl<sub>3</sub> (structure E).

In conclusion, it should be noted that the characteristic feature of the complexes under study is that they have different structures depending on the nature of the solvent and the aggregative state. Apparently, these changes are associated with the unsymmetrical structures of the ligands containing different-valence phosphorus atoms. In addition, the 1:1 and 1:2 complexes in pyridine form different structures in which the Ag+ atom is coordinated both to the PIII atom and to the P=S group. From this it follows that the PIII atom and the P=S group are comparable in their ability to form  $d\pi$ -bonds with the Ag<sup>I</sup> atom.

## Experimental

The IR spectra of the complexes were measured on an UR-20 spectrophotometer (400-3700 cm<sup>-1</sup>) as Nujol mulls and in pyridine solutions (l = 0.07 mm,  $C \approx 0.2 \text{ mol } L^{-1}$ ). The <sup>31</sup>P-{<sup>1</sup>H} NMR spectra were recorded on a Bruker WP-200SY instrument (81.01 MHz) with a 85% H<sub>3</sub>PO<sub>4</sub> solution as the external standard. The concentrations of the solutions were 0.1-0.2 mol L<sup>-1</sup>.

Isolation of the 1: 1 complexes from pyridine. The complex Ag(L1)NO<sub>3</sub> (1) (0.11 g, 0.065 mmol) was dissolved in pyridine (1 mL) upon heating to 40-45 °C. The solution was cooled, and anhydrous ether was gradually added until a precipitate formed. The precipitate was filtered off and thoroughly dried in vacuo. The yield of complex 1 was 0.09 g (82%). Found (%): C, 52.2; H, 4.1; N, 2.5; P, 9.7. C<sub>26</sub>H<sub>24</sub>AgNO<sub>3</sub>P<sub>2</sub>S. Calculated (%): C, 52.1; H, 4.0; N, 2.3; P, 10.3. The data of elemental analysis correspond to the metal: ligand composition of 1:1.

The complex Ag(L<sup>2</sup>)NO<sub>3</sub> (2) was prepared as described above; the yield was 61%. Found (%): C, 54.0; H, 4.4; N, 2.3; P, 9.7. C<sub>28</sub>H<sub>28</sub>AgNO<sub>3</sub>P<sub>2</sub>S. Calculated (%): C, 53.5; H, 4.5; N, 2.3; P, 9.9.

Synthesis of {Ag[Ph2P(S)(CH2)2PPh2]2NO3Py}Py (3). The ligand L1 (0.579 g, 0.1765 mmol) was added to a solution of AgNO<sub>3</sub> (0.015 g, 0.082 mmol) in pyridine (1.5 mL) so that the metal: ligand ratio was approximately 1:2 with a small excess of the ligand. The reaction solution was kept in the dark. Crystals of 3 were isolated after approximately one month. Found (%): C, 62.7; H, 4.9; N, 3.5. C<sub>62</sub>H<sub>58</sub>AgN<sub>3</sub>O<sub>3</sub>P<sub>4</sub>S<sub>2</sub>. Calculated (%): C, 62.6; H, 4.9; N, 3.5.

Table 4. 31P NMR spectra of the 1:2 complexes (3 and 4) in pyridine and chloroform

| Compound                     | Solvent           | δPIII  | Δδ    | $J_{\rm PP}/{\rm Hz}$ | δPV   | Δδ   | J <sub>PP</sub> /Hz |
|------------------------------|-------------------|--------|-------|-----------------------|-------|------|---------------------|
| $Ph_2P(S)(CH_2)_2PPh_2(L^1)$ | Pyridine          | -13.23 | 0     | 49.5                  | 44,83 | 0    | 49.7                |
|                              | CHCl <sub>3</sub> | -12.88 | 0     | 49.3                  | 44.32 | 0    | 49.5                |
| $Ag(L^{1})_{2}NO_{3}Py(3)$   | Pyridine          | +5.13  | 18.36 | 38.4                  | 45.46 | 0.63 | 38.5                |
| J. 12 3 7 . 1                | CHCl <sub>3</sub> | +4.52  | 17.40 | 0a                    | 45.88 | 1.56 | 16.1                |
| $Ag_2(L^1)_4(NO_3)_2$ (4)    | CHCl <sub>3</sub> | +5.28  | 18.16 | 0,6                   | 45.89 | 1.57 | 21.7                |

 $<sup>^{</sup>a}_{b} \Delta v_{1/2} = 175 \text{ Hz.}$  $^{b}_{b} \Delta v_{1/2} = 185 \text{ Hz.}$ 

**Table 5.** Atomic coordinates ( $\times 10^4$ ; for H atoms,  $\times 10^3$ ) and isotropic (equivalent for nonhydrogen atoms) temperature factors ( $U_{eo}/U_{iso}\times 10^3$ ) in the structure of 3

| Ag(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(U_{\rm eq}/U_{\rm i})$ | $_{\rm so}$ × 10 <sup>3</sup> ) in the s | tructure of 3    |          |                                    | • • • • • • • • • • • • • • • • • • • • |                       | · · · · · · · · · · · · · · · · · · · | <del></del> |                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------|------------------|----------|------------------------------------|-----------------------------------------|-----------------------|---------------------------------------|-------------|--------------------------------------|
| N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Atom                     | X                                        | у                | ζ        | $U_{\rm eq}/U_{\rm iso}/{\rm A}^2$ | Atom                                    | х                     | у                                     | <i>z</i>    | $U_{\rm eq}/U_{\rm iso}/{\rm \AA}^2$ |
| N(1) -6564(6) 2455(2) 4159(6) 71(3) C(54) -11362(11) 931(5) -854(8) 93(3) 0(1) -7675(12) 2377(9) 3581(13) 266(12) C(56) -10138(11) 1658(3) -577(8) 87(2) C(2) -6527(12) 2405(7) 5224(12) 211(8) C(57) -9189(9) 1480(3) 431(7) 73(2) C(3) -5493(9) 2599(4) 38051(0) 149(4) C(53) -4852(20) 4115(11) -414(31) 214(41) 214(3) (1) 431(3) (1) 431(3) 2599(2) 437(1) 556(2) 74(1) C(59) -491(22) 416(6) 17 341(3) 266(10) S(2) -3329(3) 120(1) 2326(2) 881(1) C(60) -5844(20) 4395(9) 1191(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(19) 170(                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ag(1)                    | -9415(1)                                 | 2188(1)          | 5170(1)  | 56(1)                              | C(53)                                   | -10379(8)             | 752(3)                                | 126(7)      | 76(2)                                |
| 0(1) -7675(12) 2374(9) 3538(13) 266(12) C(56) -101838(11) 1658(3) -577(8) 87(2) C(3) -527(12) 241(8) C(57) -9189(9) 1480(3) 431(7) 73(2) C(3) -5493(9) 2599(4) 3805(10) 149(4) C(58) -4882(26) 4115(11) -414(31) 214(13) 214(13) C(10) -415(11) -414(31) 214(13) 214(13) C(10) -415(11) -414(31) 214(13) 214(13) C(10) -415(11) -414(31) 214(13) 214(13) C(10) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14) -415(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | -6564(6)                                 |                  | 4159(6)  |                                    | C(54)                                   | -11362(11)            | 931(5)                                | -854(8)     |                                      |
| $\begin{array}{c} 0(2) & -6527(12) & 2405(7) & 5224(12) & 211(8) & C(57) & -9189(9) & 1480(3) & 443(7) & 737(2) \\ 0(3) & -599(9) & 3507(1) & 5563(2) & 74(1) & C(59) & -4912(29) & 4166(11) & 734(31) & 214(13) \\ S(1) & -9590(2) & 4537(1) & 5563(2) & 74(1) & C(69) & -6912(29) & 4166(11) & 734(31) & 206(10) \\ S(2) & -832(3) & 120(1) & 2326(2) & 383(1) & C(60) & -5844(26) & 4395(9) & 119(19) & 170(7) \\ P(1) & -9799(1) & 1550(1) & 5157(1) & 46(1) & C(61) & -7074(27) & 4512(11) & 340(16) & 214(11) \\ P(2) & -9226(2) & 252(1) & 6665(1) & 52(1) & C(62)^2 & -7221(30) & 4431(11) & -340(16) & 214(11) \\ P(3) & -8802(2) & 4096(1) & 4348(11) & 31(1) & C(62)^2 & -7221(30) & 4431(11) & -707(34) & 2081(2) \\ P(4) & -8024(2) & 782(1) & 2093(1) & 37(1) & H(101) & -1031(0) & 77(3) & 380(6) & 51(16) \\ C(1) & -9740(6) & 1084(3) & 3569(6) & 35(1) & H(102) & -1038(0) & 118(3) & 300(7) & 72(20) \\ C(3) & -207(0) & 140(3) & 6389(6) & 35(1) & H(102) & -1038(0) & 118(3) & 300(7) & 72(20) \\ C(4) & -9172(7) & 3497(2) & 4899(6) & 60(1) & H(201) & -756(10) & 102(2) & 614(5) & 845(1) \\ C(5) & -1227(8) & 277(7) & 3389(6) & 30(1) & H(201) & -7840(7) & 125(2) & 614(5) & 345(1) \\ C(6) & -1314(11) & 2925(4) & 2348(9) & 96(3) & H(401) & -834(6) & 336(2) & 614(5) & 345(1) \\ C(7) & -1747(13) & 2885(5) & 1227(9) & 96(3) & H(401) & -834(6) & 328(2) & 433(5) & 37(13) \\ C(8) & -11578(15) & 2536(6) & 1169(9) & 195(4) & H(5) & -1284(8) & 279(3) & 398(8) & 68(21) \\ C(9) & -1066(11) & 1205(2) & 5405(5) & 52(1) & H(7) & -1331(13) & 298(4) & 57(11) & 103(6) \\ C(12) & -14006(8) & 1466(3) & 5478(8) & 82(2) & H(9) & -991(10) & 233(3) & 246(4) & 270(3) & 120(3) \\ C(13) & -14338(8) & 104(2) & 248(4) & 270(3) & 144(4) & 256(10) & 100(3) \\ C(13) & -14338(8) & 104(2) & 5834(6) & 57(11) & H(10) & -5838(6) & 104(2) & 248(5) & 79(13) & 120(3) \\ C(14) & -13334(9) & 693(3) & 5981(8) & 80(2) & H(40) & -1381(13) & 298(4) & 57(11) & 120(3) \\ C(15) & -14338(8) & 104(2) & 526(10) & 106(2) & 148(1) & 148(2) & 148(2) & 148(2) & 148(2) & 148(2) \\ C(16) & -8538(6) & 116(2) & 5405(6) & 11(1) & H(10$                                                                                                                                                                                                                                                                                                                                                                                                                   | N(2)                     |                                          |                  | 3291(5)  |                                    |                                         | -11270(9)             |                                       | -1201(7)    |                                      |
| \( \text{Q3} \) -5493(9) \( 2599(4) \) 3805(10) \\ 149(4) \\ 16(51) \\ -495(22) \\ 4115(11) \\ -414(13) \\ 12(413) \\ 12(413) \\ 12(51) \\ -8329(3) \\ 12(01) \\ 12226(2) \\ 838(1) \\ 16(60) \\ -8544(26) \\ 4395(9) \\ 1193(19) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7) \\ 170(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                          |                  | 3638(13) |                                    |                                         | -10188(11)            |                                       | -577(8)     |                                      |
| \$\frac{\text{S}(1)}{2} = -9590(2)\$\$ 4537(1)\$\$ 5563(2)\$\$ 74(1)\$\$ \text{C}(69)^*\$\$ -4912(29)\$\$ 4166(11)\$\$ 734(31)\$\$ 206(10)\$\$ \$\$ 127(10)\$\$ 232(20)\$\$ 838(10)\$\$ \text{C}(60)^*\$\$ -5844(26)\$\$ 439(9)\$\$ 179(7)\$\$ 179(7)\$\$ 179(7)\$\$ 1350(1)\$\$ 5157(1)\$\$ 46(1)\$\$ \text{C}(61)^*\$\$ -7074(27)\$\$ 4512(11)\$\$ 340(36)\$\$ 214(11)\$\$ 490(21)\$\$ 222(21)\$\$ 265(6)\$\$ 525(1)\$\$ \text{C}(65)^*\$\$ -7221(30)\$\$ 4443(11)\$\$ -736(34)\$\$ 208(12)\$\$ 298(12)\$\$ 2982(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2)\$\$ 282(2) |                          |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| S(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| P(1) =97999(1) 1550(1) 5157(1) 446(1) C(61)* -77074(27) 4512(11) 340(36) 214(11) P(2) = 2226(2) 2825(1) 6665(1) 52(1) C(62)* -7221(20) 4434(11) -780(34) 208(1) P(3) = 8802(2) 4096(1) 4548(1) 51(1) C(63)* -6111(40) 4219(12) -1224(19) 195(10) P(4) = 8024(2) 722(10) 4343(11) -1010(17) 77(3) 380(6) 51(10) C(1) = 9740(6) 1064(3) 3699(5) 55(1) H(101) -1001(7) 77(3) 333(6) 72(20) C(2) = 8270(7) 1141(3) 3386(3) 59(1) H(101) -790(10) 142(4) 3334(8) 87(7) C(3) = 8410(8) 3364(3) 6202(6) 57(2) H(202) -7566(10) 102(3) 409(8) 83(24) C(4) -9172(7) 3497(2) 4899(6) 60(1) H(301) -740(7) 125(2) 409(8) 83(24) C(4) -9172(7) 3497(2) 4899(6) 60(1) H(301) -740(7) 125(2) 409(8) 83(24) C(5) -12275(8) 2727(3) 3338(7) 72(2) H(302) =854(6) 356(2) 663(5) 33(4) C(7) -12747(13) 2885(5) 1227(9) 105(3) H(401) = 883(6) 328(2) 349(7) 73(21) C(3) -12747(13) 2885(5) 1227(9) 105(3) H(401) = 883(6) 328(2) 349(7) 73(21) C(3) -15788(15) 2636(6) 1169(9) 105(4) H(5) -1254(8) 279(3) 398(8) 687(2) C(10) -11601(6) 1205(2) 340(5) 52(1) H(7) -1331(13) 298(4) 37(1) 120(38) C(11) -12639(6) 1551(3) 5244(6) 67(2) H(6) -1381(13) 314(5) 246(11) 120(38) C(11) -12639(6) 1551(3) 5244(6) 67(2) H(8) -11621(6) 2481(5) 79(13) 120(36) C(11) -12639(6) 1551(3) 5244(6) 67(2) H(3) -11621(6) 2481(5) 79(13) 120(36) C(11) -12639(6) 1551(3) 5244(6) 67(2) H(3) -11621(6) 2481(5) 79(13) 120(36) C(11) -12639(6) 1551(3) 5244(6) 67(2) H(3) -11621(6) 2481(5) 79(13) 120(36) C(11) -12639(6) 1551(3) 5244(6) 67(2) H(3) -11621(6) 2481(5) 79(13) 120(36) C(11) -12639(6) 1551(3) 5244(6) 67(2) H(3) -11621(6) 2481(5) 79(13) 120(36) C(11) -12639(6) 1551(3) 5244(6) 67(2) H(3) -11621(6) 2481(5) 79(13) 120(36) C(11) -12639(6) 1551(3) 5244(6) 67(2) H(3) -11621(6) 2481(5) 79(13) 120(36) C(12) -1406(8) H(466(3) 5478(8) 82(2) H(7) -1331(13) 298(4) 79(11) 120(8) 80(2) T(12) H(13) H(                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                          |                  |          |                                    |                                         |                       |                                       | 734(31)     |                                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                          |                  |          |                                    |                                         |                       |                                       |             | 170(7)                               |
| P(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| P(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | ~~68U2(2)<br>~~8034(3)                   |                  |          |                                    |                                         |                       |                                       |             |                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                          |                  | 3600(5)  |                                    |                                         | -1058(8)              |                                       |             |                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(1)                     |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(3)                     |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| C(5) -12275(8) 27727(3) 3338(7) 72(2) H(302) -854(6) 356(2) 663(5) 33(4) (6) (6) -1314(11) 2925(4) 2388(9) 96(3) H(401) -883(6) 35(2) 433(5) 37(13) (7) -12747(13) 2885(5) 1227(9) 105(3) H(402) -1028(9) 359(3) 479(7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(21) (7) 73(2                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(4)                     |                                          |                  | 4899(6)  |                                    |                                         |                       |                                       |             |                                      |
| $ \begin{array}{c} C(6) & -13144(11) & 2925(4) & 2348(9) & 96(3) & H(401) & -883(6) & 328(2) & 433(5) & 37(13) \\ C(7) & -12747(13) & 2885(5) & 1227(9) & 105(3) & H(402) & -1028(9) & 359(3) & 479(7) & 73(21) \\ C(8) & -10768(11) & 2434(4) & 2216(8) & 90(2) & H(6) & -13181(13) & 314(5) & 246(11) & 120(38) \\ C(10) & -11601(6) & 1205(2) & 5405(5) & 52(1) & H(7) & -1331(13) & 298(4) & 57(11) & 120(36) \\ C(11) & -12639(6) & 1551(3) & 5244(6) & 67(2) & H(8) & -11621(6) & 248(5) & 79(13) & 120(36) \\ C(12) & -14006(8) & 1466(3) & 5478(8) & 82(2) & H(9) & -991(10) & 233(3) & 216(8) & 86(27) \\ C(13) & -14938(8) & 1041(3) & 5851(7) & 78(2) & H(9) & -991(10) & 233(3) & 216(8) & 86(27) \\ C(14) & -13335(9) & 693(3) & 5580(7) & 71(2) & H(11) & -12524(10) & 181(4) & 476(9) & 97(26) \\ C(15) & -11974(8) & 767(3) & 5760(7) & 71(2) & H(13) & -15324(10) & 100(13) & 605(8) & 86(24) \\ C(16) & -8538(6) & 1016(2) & 6288(5) & 48(1) & H(14) & -13991(0) & 39(4) & 628(9) & 101(29) \\ C(17) & -8097(7) & 560(2) & 6095(6) & 61(1) & H(15) & -1121(8) & 54(3) & 590(7) & 69(20) \\ C(18) & -7097(9) & 531(3) & 6992(8) & 77(2) & H(13) & -6537(9) & 2(3) & 69(7) & 78(22) \\ C(19) & -6530(9) & 546(3) & 8079(7) & 81(2) & H(18) & -687(9) & 2(3) & 69(7) & 78(22) \\ C(20) & -6951(10) & 991(4) & 8295(7) & 85(2) & H(29) & -6587(9) & 114(3) & 895(9) & 79(23) \\ C(21) & -7935(8) & 1224(3) & 73397(5) & 64(2) & H(20) & -658(9) & 114(3) & 895(9) & 79(23) \\ C(22) & -10946(7) & 301(13) & 709(5) & 64(2) & H(20) & -658(9) & 114(3) & 895(9) & 79(23) \\ C(23) & -11959(10) & 2639(4) & 7024(8) & 88(2) & H(21) & -1432(11) & 234(4) & 665(10) & 106(32) \\ C(24) & -13245(11) & 2734(5) & 7337(12) & 114(4) & H(24) & -1393(13) & 261(4) & 78(11) & 114(35) \\ C(25) & -10666(11) & 1318(5) & 7569(10) & 107(3) & H(26) & -1283(11) & 389(4) & 78(11) & 114(35) \\ C(26) & -12656(12) & 3547(5) & 7569(10) & 107(3) & H(26) & -1283(11) & 389(4) & 78(11) & 114(35) \\ C(26) & -12656(12) & 3547(5) & 7569(10) & 107(3) & H(26) & -1283(11) & 389(4) & 78(11) & 114(35) \\ C(26) & -12656(12) & 3547(5) & 7569(10) & 107(3) &$                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                          |                  |          |                                    |                                         | -854(6)               |                                       |             |                                      |
| $ \begin{array}{c} C(7) & -12747(13) & 2885(5) & 1227(9) & 105(3) & 114(9) & -1028(9) & 359(3) & 479(7) & 73(21) \\ C(8) & -11578(15) & 2636(6) & 1169(9) & 105(4) & 11(5) & -1254(8) & 279(3) & 398(8) & 68(21) \\ C(10) & -10768(11) & 2443(4) & 2216(8) & 90(2) & 116(6) & -1381(13) & 314(5) & 246(11) & 120(38) \\ C(10) & -11601(6) & 1205(2) & 5405(5) & 52(1) & 11(7) & -1331(13) & 298(4) & 57(11) & 120(36) \\ C(12) & -14006(8) & 1466(3) & 5478(8) & 82(2) & 11(9) & -991(10) & 233(3) & 216(8) & 86(27) \\ C(13) & -14338(8) & 1041(3) & 5851(7) & 78(2) & 11(1) & -1252(10) & 181(4) & 476(9) & 99(2(6) \\ C(14) & -13338(9) & 693(3) & 5981(8) & 80(2) & 11(1) & -1252(10) & 181(4) & 476(9) & 99(2(6) \\ C(15) & -11974(8) & 767(3) & 5760(7) & 71(2) & 11(3) & -1352(10) & 100(3) & 608(8) & 86(27) \\ C(16) & -8538(6) & 1016(2) & 6288(5) & 48(1) & 11(4) & -1339(10) & 39(4) & 628(9) & 101(29) \\ C(17) & -8997(7) & 560(2) & 6095(6) & 61(1) & 11(3) & -1352(10) & 100(3) & 608(8) & 86(24) \\ C(19) & -6530(9) & 546(3) & 8097(7) & 81(2) & 11(1) & -855(11) & 41(4) & 526(10) & 100(28) \\ C(20) & -6931(10) & 991(4) & 8295(7) & 85(2) & 11(19) & -587(15) & 41(5) & 874(12) & 135(43) \\ C(21) & -7933(8) & 1224(3) & 7399(5) & 64(2) & 11(20) & -658(9) & 114(3) & 893(9) & 79(23) \\ C(22) & -10946(7) & 301(3) & 7005(5) & 62(1) & 11(2) & -1430(13) & 320(4) & 788(11) & 114(4) \\ C(23) & -11959(10) & 2639(4) & 7024(8) & 88(2) & 11(2) & -1430(13) & 320(4) & 788(11) & 114(3) \\ C(24) & -12345(11) & 2734(5) & 3737(2) & 114(4) & 14(4) & -1391(3) & 320(4) & 788(11) & 114(3) \\ C(25) & -12666(11) & 3183(5) & 7620(10) & 108(3) & 11(23) & -1430(13) & 320(4) & 788(11) & 114(3) \\ C(26) & -12656(12) & 3457(3) & 7569(10) & 107(3) & 11(3) & -1430(13) & 320(4) & 788(11) & 114(3) \\ C(26) & -12566(12) & 3457(5) & 7569(10) & 108(3) & 11(3) & -1430(13) & 320(4) & 788(11) & 114(3) \\ C(26) & -12656(12) & 3457(6) & 7589(10) & 101(3) & 11(3) & -1430(13) & 320(4) & 788(11) & 114(3) \\ C(26) & -12656(12) & 3457(6) & 7569(10) & 101(3) & 11(3) & -1430(13) & 320(4) & 788(11) & 114(3) \\ C(26) & -12656(12) &$                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                          |                  | 2348(9)  |                                    | H(401)                                  | -883(6)               |                                       |             |                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                          |                  | 1227(9)  |                                    |                                         | -1028(9)              | 359(3)                                |             | 73(21)                               |
| C(9) -16768(11) 2443(4) 2216(8) 90(2) H(6) -1381(13) 314(5) 246(11) 120(38) C(11) -1601(6) 1205(2) 8405(5) 52(1) H(7) -1331(13) 314(5) 79(13) 120(36) C(11) -12639(6) 1551(3) 5244(6) 67(2) H(8) -1162(16) 248(5) 79(13) 120(36) C(11) -14338(8) 1041(3) 5851(7) 78(2) H(9) -991(10) 233(3) 216(8) 86(27) C(13) -14338(8) 1041(3) 5851(7) 78(2) H(11) -1252(10) 181(4) 476(9) 95(26) C(14) -13335(9) 693(3) 5981(8) 80(2) H(12) -1483(12) 174(4) 554(10) 121(34) C(15) -11974(8) 767(3) 5760(7) 71(2) H(13) -1532(10) 100(3) 605(8) 86(24) C(16) -8538(6) 1016(2) 6288(5) 48(1) H(14) -1339(10) 39(4) 628(9) 101(29) C(17) -8907(7) 560(2) 6095(6) 61(1) H(15) -1121(8) 54(3) 590(7) 678(2) C(18) -7097(9) 331(3) 6992(8) 77(2) H(17) -855(11) 41(4) 526(10) 100(28) C(19) -6530(9) 546(3) 8079(7) 81(2) H(18) -687(9) 2(3) 697(7) 782(2) C(20) -6951(10) 991(4) 8295(7) 85(2) H(19) -587(15) 41(5) 874(12) 135(43) C(21) -7935(8) 1224(3) 7399(5) 64(2) H(20) -658(9) 11(4) 899(9) 79(22) C(22) -10946(7) 3001(3) 7005(5) 62(1) H(21) -821(6) 154(2) 757(5) 45(14) C(23) -11959(10) 2659(4) 7024(8) 88(2) H(23) -1162(11) 234(4) 665(0) 106(32) C(24) -13245(11) 2334(5) 750(10) 108(3) H(25) -1450(13) 320(4) 788(11) 114(35) C(25) -13606(11) 3183(5) 7620(10) 108(3) H(25) -1450(13) 320(4) 788(11) 114(35) C(26) -12656(12) 3547(5) 7569(10) 108(3) H(25) -1450(13) 320(4) 788(11) 114(35) C(26) -12656(12) 3547(5) 7569(10) 108(3) H(25) -1450(13) 320(4) 788(11) 114(35) C(26) -12656(12) 3547(5) 7569(10) 108(3) H(25) -1450(13) 320(4) 788(11) 114(35) C(26) -12656(12) 3547(5) 7569(10) 108(3) H(25) -1450(13) 320(4) 788(11) 114(35) C(26) -12656(12) 3547(5) 7569(10) 108(3) H(25) -1450(13) 320(4) 788(11) 114(35) C(26) -12656(12) 3547(5) 7569(10) 108(3) H(25) -1450(13) 320(4) 788(11) 114(35) C(26) -12656(12) 3547(5) 7569(10) 108(3) H(25) -1450(13) 320(4) 788(11) 114(35) C(26) -12656(12) 3547(5) 7569(10) 108(3) H(25) -1450(13) 320(4) 788(11) 114(35) C(26) -12656(12) 3547(5) 7569(10) 108(3) H(25) -1450(13) 320(4) 788(11) 114(35) C(26) -12656(12) 3547(5) 7569(10) 108(3) H(25) -1450(13) 320(4                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(8)                     | -11578(15)                               | 2636(6)          |          | 105(4)                             |                                         | -1254(8)              | 279(3)                                | 398(8)      | 68(21)                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                          |                  |          |                                    |                                         | -1381(13)             |                                       |             |                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                          |                  |          |                                    | H(7)                                    | -1331(13)             | 298(4)                                | 57(11)      |                                      |
| C(13) -14338(8) 1041(3) \$851(7) 78(2) H(11) -1252(10) 181(4) 476(9) 95(26) (214) -13335(9) 693(3) 5981(8) 80(2) H(12) -1532(10) 100(3) 605(8) 86(24) (216) -8538(6) 1016(2) 6288(5) 48(1) H(14) -1339(10) 39(4) 628(9) 101(29) (217) 60(2) 6095(6) 61(1) H(15) -112(18) 54(3) 390(7) 69(20) (218) -6530(9) 31(3) 6992(8) 77(2) H(17) -855(11) 41(4) 526(10) 100(28) (219) -6530(9) 546(3) 8079(7) 81(2) H(18) -587(15) 41(4) 526(10) 100(28) (219) -6951(10) 991(4) 8295(7) 81(2) H(18) -587(15) 41(5) 874(12) 135(43) (221) -7935(8) 1224(3) 7399(5) 64(2) H(20) -6858(9) 114(3) 895(9) 79(23) (69(7) 78(22) (22) -10946(7) 3001(3) 7005(5) 62(1) H(21) -821(6) 154(2) 757(5) 45(14) (223) -11959(10) 2639(4) 7024(8) 88(2) H(23) -1162(11) 234(4) 665(10) 106(32) (224) -13245(11) 2734(5) 7337(12) 114(4) H(24) -1393(13) 263(4) 758(11) 114(3) 5(25) -13606(11) 3183(5) 7620(10) 108(3) H(25) -1450(13) 320(4) 788(11) 121(36) (225) -13606(11) 3183(5) 7620(10) 108(3) H(25) -1450(13) 389(4) 788(11) 121(36) (226) -12656(12) 3547(5) 7569(10) 107(3) H(26) -1283(11) 389(4) 780(9) 96(28) (227) -11320(9) 3451(3) 7258(8) 82(2) H(27) -1069(11) 374(4) 73(9) 101(30) (228) -8107(7) 2713(2) 8183(6) 63(2) H(29) -926(10) 313(3) 911(8) 89(25) (229) -8412(12) 2893(4) 9236(7) 102(3) H(30) -551(9) 293(4) 1105(9) 97(77) (33) -6991(8) 245(3) 327(5) 942(10) 101(3) H(31) -588(9) 243(3) 911(8) 89(25) (229) -8412(12) 2293(4) 9236(7) 102(3) H(30) -551(10) 313(3) 914(8) 73(26) (23) -6994(8) 245(3) 827(7) 78(2) H(35) -868(19) 348(7) 288(16) 200(71) (23) -6994(8) 245(3) 827(7) 78(2) H(35) -868(19) 348(7) 288(16) 200(71) (23) -6994(8) 44(6) 44(8) 894(10) H(46) H(48) -386(16) 31(5) 117(13) H(31) -588(9) 243(3) 1118(8) 73(21) (23) -6994(1) 379(3) 2994(8) 81(24) H(37) -1069(11) 374(4) 559(11) 1105(9) 97(27) (23) -6968(17) 379(3) 394(8) 81(2) H(47) -1069(11) 374(4) 559(11) 1105(9) 97(27) (23) -6968(17) 379(3) 394(8) 81(2) H(47) -1069(11) 374(4) 559(11) 1105(9) 97(27) (23) -6968(17) 379(3) 394(8) 327(7) 78(2) H(35) -868(19) 336(1) 378(8) 393(6) 57(77) (23) -6968(17) 379(3) 384(4) 384(10                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                          |                  |          |                                    | H(8)                                    | -1162(16)             | 248(5)                                |             |                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                          |                  |          |                                    | H(9)                                    |                       |                                       | 216(8)      |                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                          |                  |          | /8(2)                              |                                         | -1252(10)             | 181(4)                                |             |                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                          | 093(3)<br>767(2) | 5760(7)  |                                    | H(12)                                   | -1463(12)<br>1533(10) |                                       |             |                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| C(18) -7097(9) 331(3) 6992(8) 77(2) H(17) -855(11) 41(4) 526(10) 100(28) (19) -6530(9) 54(5) 807(7) 81(2) H(18) -665(7) 2(3) 697(7) 78(22) (20) -6951(10) 991(4) 8295(7) 85(2) H(19) -587(15) 41(5) 874(12) 135(43) (21) -7933(8) 1224(3) 7399(5) 64(2) H(20) -658(9) 114(3) 895(9) 79(23) (22) -10946(7) 3001(3) 7005(5) 62(1) H(21) -821(6) 154(2) 757(5) 45(14) (23) -11959(10) 2639(4) 7024(8) 88(2) H(23) -1162(11) 234(4) 665(10) 106(32) (24) -13245(11) 2734(5) 7337(12) 114(4) H(24) -1393(13) 263(4) 758(11) 114(35) (25) -13606(11) 3183(5) 7620(10) 108(3) H(25) -1450(13) 320(4) 788(11) 121(36) (26) -12636(12) 3547(5) 7569(10) 108(3) H(26) -1283(11) 389(4) 780(9) 96(28) (27) -11320(9) 3451(3) 7258(8) 82(2) H(27) -1069(11) 374(4) 723(9) 101(30) (28) -8107(7) 2713(2) 8183(6) 63(2) H(29) -926(10) 313(3) 911(8) 89(25) (29) -8412(12) 2893(4) 9236(7) 103(3) H(30) -792(10) 293(4) 1105(9) 97(27) (21) -6391(10) 239(4) 10443(8) 92(3) H(31) -561(9) 213(3) 914(8) 73(26) (23) -6065(10) 2328(5) 9422(10) 101(3) H(33) -6914(8) 246(3) 8273(7) 78(2) H(33) -694(8) 246(3) 8273(7) 78(2) H(33) -6994(3) 348(7) 2288(16) 200(71) (23) -9698(17) 3799(3) 2094(8) 121(4) H(37) -1105(9) 427(3) -248(8) 68(21) (23) -6065(10) 2328(5) 9422(10) 101(3) H(36) -894(35) 393(12) 9(32) 256(170) (23) -6968(17) 3799(3) 2094(8) 121(4) H(37) -1105(9) 427(3) -248(8) 68(21) (23) -6065(10) 385(4) 4894(10) H(26) -H(38) -H(24) H(38) H(38                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                          |                  | 6095(6)  |                                    |                                         |                       |                                       |             |                                      |
| C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                          |                  | 6992(8)  |                                    |                                         |                       |                                       |             |                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | -6530(9)                                 | 546(3)           |          |                                    |                                         |                       | 2(3)                                  |             |                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                          |                  |          |                                    |                                         | -587(15)              |                                       |             |                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                          | 1224(3)          |          | 64(2)                              | H(20)                                   | -658(9)               | 114(3)                                | 895(9)      | 79(23)                               |
| C(23) -11959(10) 2639(4) 7024(8) 88(2) H(23) -1162(11) 234(4) 665(10) 106(32) C(24) -13245(11) 2734(5) 7337(12) 114(4) H(24) -1393(13) 263(4) 758(11) 114(35) C(25) -13606(11) 3183(5) 7620(10) 108(3) H(25) -1450(13) 320(4) 788(11) 121(36) C(26) -12636(12) 3547(5) 7569(10) 107(3) H(26) -1283(11) 389(4) 780(9) 96(28) C(27) -11320(9) 3451(3) 7258(8) 82(2) H(27) -1069(11) 374(4) 723(9) 101(30) C(28) -8412(12) 2893(4) 9236(7) 102(3) H(30) -792(10) 293(4) 1105(9) 97(27) C(30) -7551(13) 2795(5) 10369(8) 112(3) H(31) -588(9) 243(3) 1118(8) 73(21) C(31) -6391(10) 2496(4) 10443(8) 92(3) H(32) -561(9) 213(3) 914(8) 73(21) C(33) -6914(8) 2426(3) 8273(7) 78(2) H(32) -669(7) 227(3) 756(6) 59(17) C(33) -6914(8) 2426(3) 8273(7) 78(2) H(35) -868(19) 348(7) 228(16) 200(71) C(35) -9698(17) 3799(3) 2094(8) 121(4) H(37) -1105(9) 427(3) -24(8) 68(21) C(36) -10313(22) 3854(4) 894(10) 142(6) H(38) -1124(11) 495(4) 78(10) 107(30) C(37) -10853(13) 4281(4) 476(9) 104(3) H(39) -970(14) 480(5) 291(11) 124(42) C(38) -10792(12) 4639(4) 1249(8) 96(3) H(41) -672(11) 478(4) 570(9) 99(29) C(39) -10192(10) 4572(3) 2468(8) 80(2) H(42) -436(13) 487(4) 59(11) 124(42) C(38) -10792(12) 4639(4) 1249(8) 96(3) H(41) -672(11) 478(4) 570(9) 99(29) C(39) -10192(10) 4572(3) 2468(8) 80(2) H(42) -436(13) 487(4) 59(11) 11(35) C(40) -6863(7) 4140(2) 4705(6) 62(2) H(43) -265(14) 444(5) 525(11) 128(38) C(41) -6142(10) 4532(4) 5240(10) 96(3) H(44) -603(16) 351(6) 411(13) 160(49) C(42) -4652(14) 4575(7) 5363(14) 137(6) H(45) -676(8) 355(3) 393(6) 57(17) C(43) -3873(12) 4241(9) 4983(14) 135(6) H(47) -592(12) 34(4) 140(10) 103(37) 156(4) -6142(10) 4532(4) 5240(10) 96(3) H(44) -603(16) 31(5) 117(13) 145(46) C(45) -6039(10) 3788(4) 4348(10) 99(3) H(49) -255(14) 444(5) 525(11) 11(35) C(40) -6863(7) 4140(2) 4705(6) 62(2) H(43) -265(14) 444(5) 525(11) 128(38) C(40) -6863(7) 4140(2) 4705(6) 62(2) H(43) -265(14) 444(5) 525(11) 128(38) C(40) -6863(7) 4140(12) 4705(6) 62(2) H(43) -265(14) 444(5) 525(11) 113(3) 156(49) C(45) -6039(10) 3788(4) 4348(10) 99(3) H(49) -255(12) 119(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(22)                    |                                          | 3001(3)          | 7005(5)  |                                    |                                         | -821(6)               | 154(2)                                |             |                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | -11959(10)                               |                  |          |                                    |                                         |                       |                                       | 665(10)     |                                      |
| C(26)         -12656(12)         3547(5)         7569(10)         107(3)         H(26)         -1283(11)         389(4)         780(9)         96(28)           C(27)         -11320(9)         3451(3)         7258(8)         82(2)         H(27)         -1069(11)         374(4)         723(9)         101(30)           C(28)         -8107(7)         2713(2)         8183(6)         63(2)         H(27)         -1069(11)         374(4)         723(9)         101(30)           C(29)         -8412(12)         2893(4)         9236(7)         102(3)         H(30)         -792(10)         293(4)         1105(9)         97(27)           C(30)         -7551(13)         2795(5)         10369(8)         112(3)         H(31)         -588(9)         243(3)         1118(8)         73(21)           C(31)         -6391(10)         2496(4)         10443(8)         92(3)         H(32)         -561(9)         213(3)         914(8)         73(26)           C(32)         -6065(10)         2328(5)         9422(10)         101(3)         H(32)         -561(9)         213(3)         914(8)         73(26)           C(33)         -6914(8)         2426(3)         8273(7)         78(2)         H(35)         -868(19) <th< td=""><td></td><td></td><td>2734(5)</td><td>7337(12)</td><td></td><td></td><td></td><td></td><td>758(11)</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                          | 2734(5)          | 7337(12) |                                    |                                         |                       |                                       | 758(11)     |                                      |
| $\begin{array}{c} C(27) & -11320(9) \\ C(28) & -8107(7) \\ C(28) & -8107(7) \\ C(29) & -8412(12) \\ C(29) & -8412(12) \\ C(30) & -7551(13) \\ C(31) & -6391(10) \\ C(32) & -6065(10) \\ C(33) & -6914(8) \\ C(34) & -9589(7) \\ C(36) & -10313(22) \\ C(37) & -10853(13) \\ C(37) & -10853(13) \\ C(39) & -10192(10) \\ C(40) & -6863(7) \\ C(40) & -6863(1) \\$                                                                                                                                                                                                                                                                                                                                 |                          |                                          | 3183(5)          |          |                                    |                                         | -1450(13)             |                                       | 788(11)     |                                      |
| C(28)         -8107(7)         2713(2)         8183(6)         63(2)         H(29)         -926(10)         313(3)         911(8)         89(25)           C(29)         -8412(12)         2893(4)         9236(7)         102(3)         H(30)         -792(10)         293(4)         1105(9)         97(27)           C(30)         -7551(13)         2795(5)         10369(8)         112(3)         H(31)         -588(9)         243(3)         1118(8)         73(21)           C(31)         -6391(10)         2496(4)         10443(8)         92(3)         H(32)         -561(9)         213(3)         914(8)         73(26)           C(32)         -6065(10)         2328(5)         9422(10)         101(3)         H(33)         -669(7)         227(3)         756(6)         59(17)           C(33)         -6914(8)         2426(3)         8273(7)         78(2)         H(35)         -868(19)         348(7)         288(16)         200(71)           C(34)         -9589(7)         4160(2)         2933(6)         60(1)         H(36)         -894(35)         393(12)         932         262(170)           C(35)         -9688(17)         3799(3)         2094(8)         121(4)         H(37)         -1105(9)         427(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(26)                    | -12656(12)                               | 3547(5)          |          |                                    |                                         |                       | 389(4)                                | /80(9)      |                                      |
| $\begin{array}{c} C(29) & -8412(12) \\ C(30) & -7551(13) \\ C(31) & -7551(13) \\ C(31) & -7551(13) \\ C(31) & -6391(10) \\ C(31) & -6391(10) \\ C(32) & -6605(10) \\ C(32) & -6605(10) \\ C(32) & -6605(10) \\ C(33) & -6914(8) \\ C(32) & -6605(10) \\ C(33) & -6914(8) \\ C(34) & -9589(7) \\ C(33) & -6914(8) \\ C(32) & -6005(10) \\ C(34) & -9589(7) \\ C(35) & -9698(17) \\ C(36) & -10313(22) \\ C(36) & -10313(22) \\ C(37) & -10853(13) \\ C(38) & -10792(12) \\ C(38) & -10792(12) \\ C(38) & -10792(12) \\ C(39) & -10192(10) \\ C(39) & -6863(7) \\ C(40) & -6863(7) \\ C(41) & -6142(10) \\ C(42) & -4652(14) \\ C(42) & -4652(14) \\ C(43) & -3873(12) \\ C(44) & -4535(15) \\ C(44) & -4535(15) \\ C(44) & -4535(15) \\ C(44) & -6142(10) \\ C(45) & -6099(10) \\ C(47) & -5369(10) \\ C(47) & -5369(10) \\ C(49) & -3463(10) \\ C(51) & -5632(8) \\ C(51) & -563$                                                                                                                                                                                                                                                                                                                                | C(27)                    |                                          |                  |          |                                    | H(27)                                   |                       |                                       | 723(9)      |                                      |
| C(30) -7551(13) 2795(5) 10369(8) 112(3) H(31) -588(9) 243(3) 1118(8) 73(21) C(31) -6391(10) 2496(4) 10443(8) 92(3) H(32) -561(9) 213(3) 914(8) 73(26) C(32) -6065(10) 2328(5) 9422(10) 101(3) H(33) -669(7) 227(3) 756(6) 59(17) C(33) -6914(8) 2426(3) 8273(7) 78(2) H(35) -8688(19) 348(7) 288(16) 200(71) C(34) -9589(7) 4160(2) 2933(6) 60(1) H(36) -894(35) 393(12) 9(32) 262(170) C(35) -9698(17) 3799(3) 2094(8) 121(4) H(37) -1105(9) 427(3) -24(8) 68(21) C(36) -10313(22) 3854(4) 894(10) 142(6) H(38) -1124(11) 495(4) 78(10) 107(30) C(37) -10853(13) 4281(4) 476(9) 104(3) H(39) -970(14) 480(5) 291(11) 124(42) C(38) -10792(12) 4639(4) 1249(8) 96(3) H(41) -672(11) 478(4) 570(9) 99(29) C(39) -10192(10) 4572(3) 2468(8) 80(2) H(42) -436(13) 487(4) 559(11) 111(35) C(40) -6863(7) 4140(2) 4705(6) 62(2) H(43) -265(14) 444(5) 525(11) 128(38) C(40) -6863(7) 4140(2) 4705(6) 62(2) H(43) -265(14) 444(5) 525(11) 128(38) C(42) -4652(14) 4575(7) 5363(14) 137(6) H(45) -676(8) 355(3) 393(6) 57(17) C(43) -3873(12) 4241(9) 4983(14) 135(6) H(47) -592(12) 34(4) 140(10) 103(37) C(44) -4535(15) 3849(8) 4501(14) 141(6) H(48) -386(16) 31(5) 117(13) 145(46) C(45) -6039(10) 3788(4) 4348(10) 99(3) H(49) -255(12) 119(4) 132(9) 98(29) C(46) -6199(7) 939(3) 1894(5) 67(2) H(50) -398(15) 195(5) 192(13) 155(49) C(46) -6199(7) 939(3) 1894(5) 67(2) H(50) -398(15) 195(5) 192(13) 155(49) C(46) -4018(12) 722(7) 1268(10) 124(8) 93(3) H(55) -1038(9) 48(4) 42(8) 75(24) C(48) -4018(12) 722(7) 1268(10) 124(8) 93(3) H(55) -1038(9) 74(3) -115(8) 69(25) C(50) -4262(8) 1497(5) 1942(8) 93(3) H(55) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 12                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | -8107(7)                                 |                  |          |                                    |                                         |                       |                                       | 1105/01     |                                      |
| $\begin{array}{c} C(31) & -6391(10) & 2496(4) & 10443(8) & 92(3) & H(32) & -561(9) & 213(3) & 914(8) & 73(26) \\ C(32) & -6065(10) & 2328(5) & 9422(10) & 101(3) & H(33) & -669(7) & 227(3) & 756(6) & 59(17) \\ C(33) & -6914(8) & 2426(3) & 8273(7) & 78(2) & H(35) & -868(19) & 348(7) & 288(16) & 200(71) \\ C(34) & -9589(7) & 4160(2) & 2933(6) & 60(1) & H(36) & -894(35) & 393(12) & 9(32) & 262(170) \\ C(35) & -9698(17) & 3799(3) & 2094(8) & 121(4) & H(37) & -1105(9) & 427(3) & -24(8) & 68(21) \\ C(36) & -10313(22) & 3854(4) & 894(10) & 142(6) & H(38) & -1124(11) & 495(4) & 78(10) & 107(30) \\ C(37) & -10853(13) & 4281(4) & 476(9) & 104(3) & H(39) & -970(14) & 480(3) & 291(11) & 124(42) \\ C(38) & -10792(12) & 4639(4) & 1249(8) & 96(3) & H(41) & -672(11) & 478(4) & 570(9) & 99(29) \\ C(39) & -10192(10) & 4572(3) & 2468(8) & 80(2) & H(42) & -436(13) & 487(4) & 559(11) & 111(35) \\ C(40) & -6863(7) & 4140(2) & 4705(6) & 62(2) & H(43) & -265(14) & 444(5) & 525(11) & 128(38) \\ C(41) & -6142(10) & 4532(4) & 5240(10) & 96(3) & H(44) & -403(16) & 351(6) & 411(13) & 160(49) \\ C(42) & -4652(14) & 4575(7) & 5363(14) & 137(6) & H(45) & -676(8) & 355(3) & 393(6) & 57(17) \\ C(43) & -3873(12) & 4241(9) & 4983(14) & 135(6) & H(47) & -592(12) & 34(4) & 140(10) & 103(37) \\ C(44) & -4335(15) & 3849(8) & 4501(14) & 141(6) & H(48) & -386(16) & 31(5) & 117(13) & 145(46) \\ C(45) & -6039(10) & 3788(4) & 4348(10) & 99(3) & H(49) & -255(12) & 119(4) & 132(9) & 98(29) \\ C(46) & -6199(7) & 939(3) & 1894(5) & 67(2) & H(50) & -398(15) & 195(5) & 192(13) & 155(49) \\ C(47) & -5369(10) & 601(4) & 1468(8) & 92(3) & H(51) & -636(9) & 163(3) & 257(8) & 86(24) \\ C(48) & -4018(12) & 722(7) & 1268(10) & 124(5) & H(53) & -1038(9) & 48(4) & 42(8) & 75(24) \\ C(49) & -3463(10) & 1161(6) & 1499(9) & 112(4) & H(54) & -1180(9) & 74(3) & -115(8) & 69(25) \\ C(50) & -4262(8) & 1497(5) & 1942(8) & 93(3) & H(55) & -1201(10) & 160(4) & -191(9) & 104(29) \\ C(51) & -5632(8) & 1376(3) & 2154(7) & 79(2) & H(56) & -1029(12) & 201(5) & -68(11) & 127(39) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                          | 2893(4)          | 10369(8) | 102(3)                             | H(31)                                   |                       |                                       | 1118(8)     |                                      |
| C(32) -6065(10) 2328(5) 9422(10) 101(3) H(33) -669(7) 227(3) 756(6) 59(17) C(33) -6914(8) 2426(3) 8273(7) 78(2) H(35) -868(19) 348(7) 288(16) 200(71) C(34) -9589(7) 4160(2) 2933(6) 60(1) H(36) -894(35) 393(12) 9(32) 262(170) C(35) -9698(17) 3799(3) 2094(8) 121(4) H(37) -1105(9) 427(3) -24(8) 68(21) C(36) -10313(22) 3854(4) 894(10) 142(6) H(38) -1124(11) 495(4) 78(10) 107(30) C(37) -10853(13) 4281(4) 476(9) 104(3) H(39) -970(14) 480(5) 291(11) 124(42) C(38) -10792(12) 4639(4) 1249(8) 96(3) H(41) -672(11) 478(4) 570(9) 99(29) C(39) -10192(10) 4572(3) 2468(8) 80(2) H(42) -436(13) 487(4) 559(11) 111(35) C(40) -6863(7) 4140(2) 4705(6) 62(2) H(43) -265(14) 444(5) 525(11) 128(38) C(41) -6142(10) 4532(4) 5240(10) 96(3) H(44) -403(16) 351(6) 411(13) 160(49) C(42) -4652(14) 4575(7) 5363(14) 137(6) H(45) -676(8) 355(3) 393(6) 57(17) C(43) -3873(12) 4241(9) 4983(14) 135(6) H(47) -592(12) 34(4) 140(10) 103(37) C(44) -4535(15) 3849(8) 4501(14) 141(6) H(48) -386(16) 31(5) 117(13) 145(46) C(45) -6039(10) 3788(4) 4348(10) 99(3) H(49) -255(12) 119(4) 132(9) 98(29) C(46) -6199(7) 939(3) 1894(5) 67(2) H(50) -398(15) 195(5) 192(13) 155(49) C(47) -5369(10) 601(4) 1468(8) 92(3) H(51) -636(9) 163(3) 257(8) 86(24) C(48) -4018(12) 722(7) 1268(10) 124(5) H(53) -1038(9) 48(4) 42(8) 75(24) C(49) -3463(10) 1161(6) 1499(9) 112(4) H(54) -1180(9) 74(3) -115(8) 69(25) C(50) -4262(8) 1497(5) 1942(8) 93(3) H(55) -1201(10) 160(4) -191(9) 104(29) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51)                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                          | 2496(4)          | 10443(8) |                                    |                                         | -561(9)               |                                       |             |                                      |
| C(33) -6914(8) 2426(3) 8273(7) 78(2) H(35) -868(19) 348(7) 288(16) 200(71) C(34) -9589(7) 4160(2) 2933(6) 60(1) H(36) -894(35) 393(12) 9(32) 262(170) C(35) -9698(17) 3799(3) 2094(8) 121(4) H(37) -1105(9) 427(3) -24(8) 68(21) C(36) -10313(22) 3854(4) 894(10) 142(6) H(38) -1124(11) 495(4) 78(10) 107(30) C(37) -10853(13) 4281(4) 476(9) 104(3) H(39) -970(14) 480(5) 291(11) 124(42) C(38) -10792(12) 4639(4) 1249(8) 96(3) H(41) -672(11) 478(4) 570(9) 99(29) C(39) -10192(10) 4572(3) 2468(8) 80(2) H(42) -436(13) 487(4) 559(11) 111(35) C(40) -6863(7) 4140(2) 4705(6) 62(2) H(43) -265(14) 444(5) 525(11) 128(38) C(41) -6142(10) 4532(4) 5240(10) 96(3) H(44) -403(16) 351(6) 411(13) 160(49) C(42) -4652(14) 4575(7) 5363(14) 137(6) H(45) -676(8) 355(3) 393(6) 57(17) C(43) -3873(12) 4241(9) 4983(14) 135(6) H(47) -592(12) 34(4) 140(10) 103(37) C(44) -4535(15) 3849(8) 4501(14) 141(6) H(48) -386(16) 31(5) 117(13) 145(46) C(45) -6039(10) 3788(4) 4348(10) 99(3) H(49) -255(12) 119(4) 132(9) 98(29) C(46) -6199(7) 939(3) 1894(5) 67(2) H(50) -398(15) 195(5) 192(13) 155(49) C(47) -5369(10) 601(4) 1468(8) 92(3) H(51) -636(9) 163(3) 257(8) 86(24) C(49) -3463(10) 1161(6) 1499(9) 112(4) H(54) -1180(9) 74(3) -115(8) 69(25) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | -6065(10)                                |                  |          |                                    |                                         |                       |                                       |             |                                      |
| C(34) -9589(7) 4160(2) 2933(6) 60(1) H(36) -894(35) 393(12) 9(32) 262(170) C(35) -9698(17) 3799(3) 2094(8) 121(4) H(37) -1105(9) 427(3) -24(8) 68(21) C(36) -10313(22) 3854(4) 894(10) 142(6) H(38) -1124(11) 495(4) 78(10) 107(30) C(37) -10853(13) 4281(4) 476(9) 104(3) H(39) -970(14) 480(5) 291(11) 124(42) C(38) -10792(12) 4639(4) 1249(8) 96(3) H(41) -672(11) 478(4) 570(9) 99(29) C(39) -10192(10) 4572(3) 2468(8) 80(2) H(42) -436(13) 487(4) 559(11) 111(35) C(40) -6863(7) 4140(2) 4705(6) 62(2) H(43) -265(14) 444(5) 525(11) 128(38) C(41) -6142(10) 4532(4) 5240(10) 96(3) H(44) -403(16) 351(6) 411(13) 160(49) C(42) -4652(14) 4575(7) 5363(14) 137(6) H(45) -676(8) 355(3) 393(6) 57(17) C(43) -3873(12) 4241(9) 4983(14) 135(6) H(47) -592(12) 34(4) 140(10) 103(37) C(44) -4535(15) 3849(8) 4501(14) 141(6) H(48) -386(16) 31(5) 117(13) 145(46) C(45) -6039(10) 3788(4) 4348(10) 99(3) H(49) -255(12) 119(4) 132(9) 98(29) C(46) -6199(7) 939(3) 1894(5) 67(2) H(50) -398(15) 195(5) 192(13) 155(49) C(47) -5369(10) 601(4) 1468(8) 92(3) H(51) -636(9) 163(3) 257(8) 86(24) C(48) -4018(12) 722(7) 1268(10) 124(5) H(53) -1038(9) 48(4) 42(8) 75(24) C(50) -4262(8) 1497(5) 1942(8) 93(3) H(55) -1201(10) 160(4) -191(9) 104(29) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | -6914(8)                                 |                  |          |                                    |                                         | -868(19)              |                                       |             |                                      |
| C(35) -9698(17) 3799(3) 2094(8) 121(4) H(37) -1105(9) 427(3) -24(8) 68(21) C(36) -10313(22) 3854(4) 894(10) 142(6) H(38) -1124(11) 495(4) 78(10) 107(30) C(37) -10853(13) 4281(4) 476(9) 104(3) H(39) -970(14) 480(5) 291(11) 124(42) C(38) -10792(12) 4639(4) 1249(8) 96(3) H(41) -672(11) 478(4) 570(9) 99(29) C(39) -10192(10) 4572(3) 2468(8) 80(2) H(42) -436(13) 487(4) 559(11) 111(35) C(40) -6863(7) 4140(2) 4705(6) 62(2) H(43) -265(14) 444(5) 525(11) 128(38) C(41) -6142(10) 4532(4) 5240(10) 96(3) H(44) -403(16) 351(6) 411(13) 160(49) C(42) -4652(14) 4575(7) 5363(14) 137(6) H(45) -676(8) 355(3) 393(6) 57(17) C(43) -3873(12) 4241(9) 4983(14) 135(6) H(47) -592(12) 34(4) 140(10) 103(37) C(44) -4535(15) 3849(8) 4501(14) 141(6) H(48) -386(16) 31(5) 117(13) 145(46) C(45) -6039(10) 3788(4) 4348(10) 99(3) H(49) -255(12) 119(4) 132(9) 98(29) C(46) -6199(7) 939(3) 1894(5) 67(2) H(50) -398(15) 195(5) 192(13) 155(49) C(47) -5369(10) 601(4) 1468(8) 92(3) H(51) -636(9) 163(3) 257(8) 86(24) C(48) -4018(12) 722(7) 1268(10) 124(5) H(53) -1038(9) 48(4) 42(8) 75(24) C(49) -3463(10) 1161(6) 1499(9) 112(4) H(54) -1180(9) 74(3) -115(8) 69(25) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                          |                  |          |                                    |                                         |                       | 393(12)                               |             | 262(170)                             |
| C(37) -10853(13) 4281(4) 476(9) 104(3) H(39) -970(14) 480(5) 291(11) 124(42) C(38) -10792(12) 4639(4) 1249(8) 96(3) H(41) -672(11) 478(4) 570(9) 99(29) C(39) -10192(10) 4572(3) 2468(8) 80(2) H(42) -436(13) 487(4) 559(11) 111(35) C(40) -6863(7) 4140(2) 4705(6) 62(2) H(43) -265(14) 444(5) 525(11) 128(38) C(41) -6142(10) 4532(4) 5240(10) 96(3) H(44) -403(16) 351(6) 411(13) 160(49) C(42) -4652(14) 4575(7) 5363(14) 137(6) H(45) -676(8) 355(3) 393(6) 57(17) C(43) -3873(12) 4241(9) 4983(14) 135(6) H(47) -592(12) 34(4) 140(10) 103(37) C(44) -4535(15) 3849(8) 4501(14) 141(6) H(48) -386(16) 31(5) 117(13) 145(46) C(45) -6039(10) 3788(4) 4348(10) 99(3) H(49) -255(12) 119(4) 132(9) 98(29) C(46) -6199(7) 939(3) 1894(5) 67(2) H(50) -398(15) 195(5) 192(13) 155(49) C(47) -5369(10) 601(4) 1468(8) 92(3) H(51) -636(9) 163(3) 257(8) 86(24) C(48) -4018(12) 722(7) 1268(10) 124(5) H(53) -1038(9) 48(4) 42(8) 75(24) C(49) -3463(10) 1161(6) 1499(9) 112(4) H(54) -1180(9) 74(3) -115(8) 69(25) C(50) -4262(8) 1497(5) 1942(8) 93(3) H(55) -1201(10) 160(4) -191(9) 104(29) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                          | 3799(3)          |          | 121(4)                             |                                         | -1105(9)              |                                       |             |                                      |
| C(38) -10792(12) 4639(4) 1249(8) 96(3) H(41) -672(11) 478(4) 570(9) 99(29) C(39) -10192(10) 4572(3) 2468(8) 80(2) H(42) -436(13) 487(4) 559(11) 111(35) C(40) -6863(7) 4140(2) 4705(6) 62(2) H(43) -265(14) 444(5) 525(11) 128(38) C(41) -6142(10) 4532(4) 5240(10) 96(3) H(44) -403(16) 351(6) 411(13) 160(49) C(42) -4652(14) 4575(7) 5363(14) 137(6) H(45) -676(8) 355(3) 393(6) 57(17) C(43) -3873(12) 4241(9) 4983(14) 135(6) H(47) -592(12) 34(4) 140(10) 103(37) C(44) -4535(15) 3849(8) 4501(14) 141(6) H(48) -386(16) 31(5) 117(13) 145(46) C(45) -6039(10) 3788(4) 4348(10) 99(3) H(49) -255(12) 119(4) 132(9) 98(29) C(46) -6199(7) 939(3) 1894(5) 67(2) H(50) -398(15) 195(5) 192(13) 155(49) C(47) -5369(10) 601(4) 1468(8) 92(3) H(51) -636(9) 163(3) 257(8) 86(24) C(48) -4018(12) 722(7) 1268(10) 124(5) H(53) -1038(9) 48(4) 42(8) 75(24) C(49) -3463(10) 1161(6) 1499(9) 112(4) H(54) -1180(9) 74(3) -115(8) 69(25) C(50) -4262(8) 1497(5) 1942(8) 93(3) H(55) -1201(10) 160(4) -191(9) 104(29) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(36)                    |                                          | 3854(4)          |          |                                    |                                         |                       | , ,                                   |             |                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                          |                  |          |                                    |                                         | - 1                   |                                       | * * *       |                                      |
| C(41) -6142(10) 4532(4) 5240(10) 96(3) H(44) -403(16) 351(6) 411(13) 160(49) C(42) -4652(14) 4575(7) 5363(14) 137(6) H(45) -676(8) 355(3) 393(6) 57(17) C(43) -3873(12) 4241(9) 4983(14) 135(6) H(47) -592(12) 34(4) 140(10) 103(37) C(44) -4535(15) 3849(8) 4501(14) 141(6) H(48) -386(16) 31(5) 117(13) 145(46) C(45) -6039(10) 3788(4) 4348(10) 99(3) H(49) -255(12) 119(4) 132(9) 98(29) C(46) -6199(7) 939(3) 1894(5) 67(2) H(50) -398(15) 195(5) 192(13) 155(49) C(47) -5369(10) 601(4) 1468(8) 92(3) H(51) -636(9) 163(3) 257(8) 86(24) C(48) -4018(12) 722(7) 1268(10) 124(5) H(53) -1038(9) 48(4) 42(8) 75(24) C(49) -3463(10) 1161(6) 1499(9) 112(4) H(54) -1180(9) 74(3) -115(8) 69(25) C(50) -4262(8) 1497(5) 1942(8) 93(3) H(55) -1201(10) 160(4) -191(9) 104(29) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| C(42) -4652(14) 4575(7) 5363(14) 137(6) H(45) -676(8) 355(3) 393(6) 57(17) C(43) -3873(12) 4241(9) 4983(14) 135(6) H(47) -592(12) 34(4) 140(10) 103(37) C(44) -4535(15) 3849(8) 4501(14) 141(6) H(48) -386(16) 31(5) 117(13) 145(46) C(45) -6039(10) 3788(4) 4348(10) 99(3) H(49) -255(12) 119(4) 132(9) 98(29) C(46) -6199(7) 939(3) 1894(5) 67(2) H(50) -398(15) 195(5) 192(13) 155(49) C(47) -5369(10) 601(4) 1468(8) 92(3) H(51) -636(9) 163(3) 257(8) 86(24) C(48) -4018(12) 722(7) 1268(10) 124(5) H(53) -1038(9) 48(4) 42(8) 75(24) C(49) -3463(10) 1161(6) 1499(9) 112(4) H(54) -1180(9) 74(3) -115(8) 69(25) C(50) -4262(8) 1497(5) 1942(8) 93(3) H(55) -1201(10) 160(4) -191(9) 104(29) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                          |                  |          |                                    |                                         |                       |                                       | 1           |                                      |
| C(43)       -3873(12)       4241(9)       4983(14)       135(6)       H(47)       -592(12)       34(4)       140(10)       103(37)         C(44)       -4535(15)       3849(8)       4501(14)       141(6)       H(48)       -386(16)       31(5)       117(13)       145(46)         C(45)       -6039(10)       3788(4)       4348(10)       99(3)       H(49)       -255(12)       119(4)       132(9)       98(29)         C(46)       -6199(7)       939(3)       1894(5)       67(2)       H(50)       -398(15)       195(5)       192(13)       155(49)         C(47)       -5369(10)       601(4)       1468(8)       92(3)       H(51)       -636(9)       163(3)       257(8)       86(24)         C(48)       -4018(12)       722(7)       1268(10)       124(5)       H(53)       -1038(9)       48(4)       42(8)       75(24)         C(49)       -3463(10)       1161(6)       1499(9)       112(4)       H(54)       -1180(9)       74(3)       -115(8)       69(25)         C(50)       -4262(8)       1497(5)       1942(8)       93(3)       H(55)       -1201(10)       160(4)       -191(9)       104(29)         C(51)       -5632(8)       1376(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| C(44)       -4535(15)       3849(8)       4501(14)       141(6)       H(48)       -386(16)       31(5)       117(13)       145(46)         C(45)       -6039(10)       3788(4)       4348(10)       99(3)       H(49)       -255(12)       119(4)       132(9)       98(29)         C(46)       -6199(7)       939(3)       1894(5)       67(2)       H(50)       -398(15)       195(5)       192(13)       155(49)         C(47)       -5369(10)       601(4)       1468(8)       92(3)       H(51)       -636(9)       163(3)       257(8)       86(24)         C(48)       -4018(12)       722(7)       1268(10)       124(5)       H(53)       -1038(9)       48(4)       42(8)       75(24)         C(49)       -3463(10)       1161(6)       1499(9)       112(4)       H(54)       -1180(9)       74(3)       -115(8)       69(25)         C(50)       -4262(8)       1497(5)       1942(8)       93(3)       H(55)       -1201(10)       160(4)       -191(9)       104(29)         C(51)       -5632(8)       1376(3)       2154(7)       79(2)       H(56)       -1029(12)       201(5)       -68(11)       127(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| C(45) -6039(10) 3788(4) 4348(10) 99(3) H(49) -255(12) 119(4) 132(9) 98(29) C(46) -6199(7) 939(3) 1894(5) 67(2) H(50) -398(15) 195(5) 192(13) 155(49) C(47) -5369(10) 601(4) 1468(8) 92(3) H(51) -636(9) 163(3) 257(8) 86(24) C(48) -4018(12) 722(7) 1268(10) 124(5) H(53) -1038(9) 48(4) 42(8) 75(24) C(49) -3463(10) 1161(6) 1499(9) 112(4) H(54) -1180(9) 74(3) -115(8) 69(25) C(50) -4262(8) 1497(5) 1942(8) 93(3) H(55) -1201(10) 160(4) -191(9) 104(29) C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                          |                  |          |                                    |                                         |                       |                                       |             | 145/461                              |
| C(46)     -6199(7)     939(3)     1894(5)     67(2)     H(50)     -398(15)     195(5)     192(13)     155(49)       C(47)     -5369(10)     601(4)     1468(8)     92(3)     H(51)     -636(9)     163(3)     257(8)     86(24)       C(48)     -4018(12)     722(7)     1268(10)     124(5)     H(53)     -1038(9)     48(4)     42(8)     75(24)       C(49)     -3463(10)     1161(6)     1499(9)     112(4)     H(54)     -1180(9)     74(3)     -115(8)     69(25)       C(50)     -4262(8)     1497(5)     1942(8)     93(3)     H(55)     -1201(10)     160(4)     -191(9)     104(29)       C(51)     -5632(8)     1376(3)     2154(7)     79(2)     H(56)     -1029(12)     201(5)     -68(11)     127(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                          |                  |          | • •                                |                                         |                       |                                       |             |                                      |
| C(47) -5369(10) 601(4) 1468(8) 92(3) H(51) -636(9) 163(3) 257(8) 86(24)<br>C(48) -4018(12) 722(7) 1268(10) 124(5) H(53) -1038(9) 48(4) 42(8) 75(24)<br>C(49) -3463(10) 1161(6) 1499(9) 112(4) H(54) -1180(9) 74(3) -115(8) 69(25)<br>C(50) -4262(8) 1497(5) 1942(8) 93(3) H(55) -1201(10) 160(4) -191(9) 104(29)<br>C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| C(48) -4018(12) 722(7) 1268(10) 124(5) H(53) -1038(9) 48(4) 42(8) 75(24)<br>C(49) -3463(10) 1161(6) 1499(9) 112(4) H(54) -1180(9) 74(3) -115(8) 69(25)<br>C(50) -4262(8) 1497(5) 1942(8) 93(3) H(55) -1201(10) 160(4) -191(9) 104(29)<br>C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| C(49) -3463(10) 1161(6) 1499(9) 112(4) H(54) -1180(9) 74(3) -115(8) 69(25)<br>C(50) -4262(8) 1497(5) 1942(8) 93(3) H(55) -1201(10) 160(4) -191(9) 104(29)<br>C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| C(50) -4262(8) 1497(5) 1942(8) 93(3) H(55) -1201(10) 160(4) -191(9) 104(29)<br>C(51) -5632(8) 1376(3) 2154(7) 79(2) H(56) -1029(12) 201(5) -68(11) 127(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| C(51) -5632(8) 1376(3) 2154(7) 79(2) $H(56)$ -1029(12) 201(5) -68(11) 127(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                          |                  |          |                                    |                                         |                       |                                       |             |                                      |
| The state of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                          |                  |          |                                    | H(56)                                   | -1029(12)             | 201(5)                                |             |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(52)                    | -9295(6)                                 | 1025(2)          |          |                                    | H(57)                                   | -847(14)              | 168(5)                                | 74(12)      | 139(43)                              |

<sup>\*</sup> The atoms of the pyridine molecule of solvation.

Table 6. Bond lengths (d) and bond angles ( $\omega$ ) in the structure of 3

| Bond                         | d/Å          | Bond                 |      | d/Å                                   | Bond          | d/Ā         | Bond                           | d/Å                    |
|------------------------------|--------------|----------------------|------|---------------------------------------|---------------|-------------|--------------------------------|------------------------|
| Ag(1)-P(1)                   | 2.431(2)     | P(4)—C(4             | 46)  | 1.836(7)                              | C(22)—C(23)   | 1.414(11)   | C(43)—C(44)                    | 1.34(3)                |
| Ag(1)-P(2)                   | 2.455(2)     | C(1)-C(              |      | 1.516(8)                              | C(23)-C(24)   | 1.358(14)   | C(44)-C(45)                    | 1.40(2)                |
| Ag(1)-N(2)                   | 2.489(5)     | C(3)—C(              |      | 1.528(9)                              | C(24)-C(25)   | 1.38(2)     | C(46)-C(51)                    | 1.368(12)              |
| N(1)-O(1)                    | 1.109(12)    | C(5)-C(              |      | 1.352(12)                             | C(25)-C(26)   | 1.38(2)     | C(46)C(47)                     | 1.392(11)              |
| N(1) - O(3)                  | 1.170(9)     | C(6)—C(              |      | 1.39(2)                               | C(26)-C(27)   | 1.403(13)   | C(47)-C(48)                    | 1.38(2)                |
| N(1) - O(2)                  | 1.192(13)    | C(7)-C(              | -    | 1.33(2)                               | C(28)-C(29)   | 1.371(12)   | C(48)-C(49)                    | 1.37(2)                |
| N(2)-C(9)                    | 1.304(10)    | C(8)—C(              |      | 1.37(2)                               | C(28)-C(33)   | 1.380(11)   | C(49)-C(50)                    | 1.38(2)                |
| N(2)-C(5)                    | 1.331(10)    | C(10)-C              |      | 1.379(9)                              | C(29) - C(30) | 1.379(12)   | C(50)-C(51)                    | 1.405(11)              |
| S(1)-P(3)                    | 1.950(2)     | C(10)—C              |      | 1.386(9)                              | C(30)-C(31)   | 1.38(2)     | C(52)-C(57)                    | 1.372(10)              |
| S(2)—P(4)                    | 1.948(3)     | C(11)—C              |      | 1.389(10)                             | C(31)-C(32)   | 1.33(2)     | C(52)-C(53)                    | 1.371(10)              |
| P(1)—C(16)                   | 1.814(6)     | C(12)—C              |      | 1.347(13)                             | C(32)-C(33)   | 1.390(12)   | C(53)—C(54)                    | 1.375(13)              |
| P(1)-C(10)                   | 1.826(5)     | C(13)—C              |      | 1.362(13)                             | C(34)-C(39)   | 1.366(10)   | C(54)—C(55)                    | 1.35(2)                |
| P(1)-C(1)                    | 1.836(6)     | C(14)—C              |      | 1.373(11)                             | C(34)-C(35)   | 1.386(11)   | C(55)-C(56)                    | 1.367(14)              |
| P(2)—C(22)                   | 1.815(7)     | C(16)—C              |      | 1.385(9)                              | C(35)-C(36)   | 1.35(2)     | C(56)—C(57)                    | 1.403(11)              |
| P(2)-C(28)                   | 1.825(6)     | C(16)—C              |      | 1.402(9)                              | C(36)-C(37)   | 1.37(2)     | C(58)-C(59)                    | 1.30(4)                |
| P(2)-C(3)                    | 1.849(7)     | C(17)—C              |      | 1.387(10)                             | C(37)-C(38)   | 1.33(2)     | C(58)—C(63)                    | 1.34(4)                |
| P(3) - C(40)                 | 1.802(6)     | C(18)—C              |      | 1.366(13)                             | C(38)-C(39)   | 1.372(12)   | C(59) - C(60)                  | 1.29(3)                |
| P(3) - C(34)                 | 1.809(6)     | C(19)—C              |      | 1.374(13)                             | C(40)-C(41)   | 1.381(12)   | C(60)—C(61)                    | 1.38(4)                |
| P(3)-C(4)                    | 1.813(6)     | C(20)—C              |      | 1.383(10)                             | C(40)-C(45)   | 1.384(13)   | C(61)-C(62)                    | 1.35(4)                |
| P(4)-C(52)                   | 1.820(6)     | C(22)—C              |      | 1.381(12)                             | C(41)-C(42)   | 1.39(2)     | C(62)-C(63)                    | 1.36(4)                |
| P(4)-C(32)                   | 1.829(6)     | Ag(1)—O              | , ,  | 2.664(13)                             | C(42)-C(43)   | 1.33(3)     | Ag(1)-O(2)                     | 2.780(12)              |
|                              |              |                      |      | · · · · · · · · · · · · · · · · · · · |               | <del></del> | 7.6(1)—0(2)                    | 2.780(12)              |
| Angle                        |              | ω/deg                | Angl | e                                     | ω/deg         | Angle       |                                | ω/deg                  |
| P(1)-Ag(1)-P                 |              | 136.75(5)            |      | -C(8)-C(9)                            | 119.5(11)     |             | C(34)—P(3)                     | 123.7(5)               |
| P(1)-Ag(1)-N                 |              | 105.3(2)             |      | -C(9)-C(8)                            | 123.8(10)     | ` '         | C(35)—C(34)                    | 122.4(9)               |
| P(2)-Ag(1)-N                 |              | 105.3(2)             | •    | )-C(10)-C(15)                         |               |             | C(36)—C(37)                    | 119.6(11)              |
| O(1)-N(1)-O                  |              | 129.5(11)            | •    | )-C(10)-P(1)                          | 118.2(5)      |             | C(37)—C(36)                    | 120.3(9)               |
| O(1)-N(1)-O                  |              | 108.8(11)            |      | (10) - C(10) - P(1)                   | 123.4(5)      |             | C(38)—C(39)                    | 119.1(9)               |
| O(3)-N(1)-O                  |              | 120.7(10)            |      | ))—C(11)—C(12)                        |               |             | C(39)—C(38)                    | 123.3(9)               |
| C(9) - N(2) - C              |              | 116.3(7)             |      | 6)—C(12)—C(11)                        |               |             | C(40)—C(45)                    | 117.6(9)               |
| $C(9) - N(2) - A_1$          |              | 121.3(6)<br>122.1(5) |      | !)—C(13)—C(14)<br>!)—C(14)—C(15)      |               |             | C(40)—P(3)<br>C(40)—P(3)       | 119.6(7)               |
| $C(5)-N(2)-A_1$              |              | 105.5(3)             |      | s)—C(14)—C(15)<br>s)—C(15)—C(10)      |               |             | C(40)—P(3)<br>C(41)—C(42)      | 122.7(7)               |
| C(16) - P(1) - C             |              | 104.1(3)             |      | )—C(15)—C(10)<br>.)—C(16)—C(17)       |               |             | C(41) - C(42)<br>C(42) - C(41) | 120.7(13)              |
| C(16)-P(1)-C<br>C(10)-P(1)-C |              | 103.8(3)             | -    | -C(16)-C(17)                          | 118.7(5)      |             | C(42) - C(41)<br>C(43) - C(42) | 121.4(14)<br>119.4(11) |
| C(16)-P(1)-A                 |              | 116.3(2)             |      | C(16) - P(1)                          | 123.8(5)      |             | C(44)—C(45)                    | 121.6(14)              |
| C(10)-P(1)-A                 | -            | 111.5(2)             |      | C(17)-C(16)                           |               |             | C(45)—C(44)                    | 119.3(13)              |
| $C(1)-P(1)-A_{8}$            |              | 114.5(2)             |      | C(17) - C(18) - C(17)                 |               |             | C(46)—C(47)                    | 119.2(8)               |
| C(22)-P(2)-C                 |              | 102.6(3)             |      | C(19) - C(20)                         |               |             | C(46)—P(4)                     | 122.1(5)               |
| C(22)-P(2)-C                 |              | 105.6(4)             |      | -Ag(1)-N(2)                           | 75.9(5)       |             | C(46)—P(4)                     | 118.7(8)               |
| C(28)-P(2)-C                 |              | 102.4(3)             |      | -Ag(1)-P(1)                           | 107.7(4)      |             | C(47)—C(46)                    | 119.0(12)              |
| C(22)-P(2)-A                 |              | 114.3(2)             |      | -Ag(1)-P(2)                           | 108.9(4)      | . ,         | C(48)—C(47)                    | 121.9(10)              |
| C(28)-P(2)-A                 | •            | 116.5(2)             |      | -Ag(1)-O(2)                           | 40.1(9)       |             | C(49)—C(50)                    | 119.7(9)               |
| $C(3)-P(2)-A_{\xi}$          |              | 113.9(3)             |      | C(20)— $C(21)$                        |               | C(49)—      | C(50) - C(51)                  | 118.6(11)              |
| C(40)-P(3)-C                 |              | 106.4(3)             |      | C(21) - C(16)                         |               |             | C(51)-C(50)                    | 121.5(8)               |
| C(40) - P(3) - C             |              | 106.5(3)             |      | C(22) - C(23)                         |               |             | C(52)—C(53)                    | 118.8(7)               |
| C(34)-P(3)-C                 |              | 104.8(3)             |      | (22) - P(2)                           | 125.6(6)      |             | C(52)—P(4)                     | 121.2(5)               |
| C(40)-P(3)-S                 | . ,          | 113.6(3)             |      | S)-C(22)-P(2)                         | 115.7(6)      |             | C(52)—P(4)                     | 120.0(6)               |
| C(34)-P(3)-S                 |              | 112.9(2)             |      | (-C(23)-C(22))                        |               |             | C(53)-C(54)                    | 120.8(9)               |
| C(4)-P(3)-S(                 |              | 112.0(2)             |      | C(24)-C(25)                           |               |             | C(54)—C(53)                    | 120.7(9)               |
| C(52) - P(4) - C(52)         |              | 104.4(3)             |      | +)-C(25)-C(26)                        |               |             | C(55)—C(56)                    | 120.0(8)               |
| C(52)-P(4)-C(52)             |              | 106.4(3)             | -    | C(26) - C(27)                         |               |             | C(56)—C(57)                    | 119.7(9)               |
| C(2)-P(4)-C(4)               |              | 103.8(3)             |      | C(27) - C(26)                         |               |             | C(57)—C(56)                    | 119.9(8)               |
| C(52)-P(4)-S                 |              | 113.0(2)             | •    | O(28) - C(33)                         |               |             | C(58)—C(63)                    | 116(2)                 |
| C(32)-P(4)-S(                |              | 113.3(3)             |      | P(28) - P(2)                          | 123.2(6)      |             | C(59)—C(58)                    | 128(2)                 |
| C(46)-P(4)-S                 |              | 115.1(3)             |      | C(28)-P(2)                            | 118.2(6)      |             | C(60)—C(61)                    | 113(2)                 |
| C(2)-C(1)-P(                 |              | 110.0(4)             |      | 3)—C(29)—C(30                         |               |             | C(61)—C(60)                    | 124(2)                 |
| C(1)-C(2)-P(                 |              | 112.1(4)             | •    | O(30) - C(31)                         |               | _ : . :     | C(62)—C(63)                    | 116(2)                 |
| C(4)-C(3)-P(                 |              | 109.7(4)             |      | 2)-C(31)-C(30)                        |               | _ '         | C(63)-C(62)                    | 121(2)                 |
| C(3)-C(4)-P(4)               | ′            | 111.7(4)             |      | C(32)-C(33)                           |               |             | Ng(1) - N(2)                   | 112.5(6)               |
| N(2)-C(5)-C                  |              | 123.7(8)             |      | C(33) - C(32)                         |               |             | Ag(1)-P(1)                     | 111.4(5)               |
| C(5)-C(6)-C                  |              | 118.4(10)            | -    | O(34) - C(35)                         |               |             | Ag(1)-P(2)                     | 83.7(5)                |
| C(8)-C(7)-C                  |              | 118.3(9)             |      | P(34) - P(3)                          | 121.1(6)      |             |                                | ` ,                    |
| - 1.7 - (.)                  | <del> </del> | <u> </u>             |      |                                       |               |             |                                | ·····                  |

The data of elemental analysis correspond to the metal: ligand composition of 1: 2 with two pyridine molecules.

X-ray diffraction analysis of complex 3. Transparent colorless crystals of  $\{Ag[Ph_2P(S)(CH_2)_2PPh_2]_2NO_3Py\}Py$  (3),  $C_{62}H_{58}AgN_3O_3P_4S_2$  (M = 1188.98) are monoclinic, at 20 °C a=9.423(2) Å, b=28.682(6) Å, c=11.178(2) Å,  $\beta=102.30(3)$ °, V=2952(1) Å<sup>3</sup>,  $d_{calc}=1.338$  g cm<sup>-3</sup>, Z=2, space group  $P2_1$ .

The unit cell parameters and intensities of 7813 reflections were measured on an automated four-circle CAD-4 Enraf-Nonius diffractometer (Mo-K $\alpha$  radiation,  $\theta/(5/3)\theta$ -scanning technique, graphite monochromator,  $\theta < 30^{\circ}$ ,  $\mu = 5.67$  cm<sup>-1</sup>; no absorption corrections were made). The structure was solved by the direct method and refined by the full-matrix least-squares method. The difference electron density syntheses calculated in the course of the solution of the structure revealed electron density peaks corresponding to the pyridine molecule of solvation, which is, apparently, disordered. We did not attempt to locate the position of the N atom in the pyridine molecule. All nonhydrogen atoms were refined anisotropically. The positions of the hydrogen atoms were located from difference electron density syntheses (except for the atoms of the Py molecule of solvation) and refined isotropically. The final R factors were as follows:  $R_1 = 0.0392$  (based on F for 5201 reflections with  $I > 2\sigma(6)$ ) and  $wR_2 = 0.2191$  (based on  $F^2$  for all 6931 independent reflections used in the refinement). The absolute structure was determined using the refinement of Flack's parameter (x parameter). 10 According to recommendations, 11 two special refinements with different starting values of the x parameter were carried out (options BASF 0.01 and TWIN and options BASF 0.99 and TWIN, respectively). The final values of the x parameter obtained in two cases were virtually identical and were close to zero (0.034(6) and 0.040(5), respectively), which indicates that the absolute structure was unambiguously determined. All calculations were carried out using the SHELXTL PLUS 5 program package (the gamma version).

The atomic coordinates and the temperature factors are given in Table 5. The bond lengths and the bond angles are listed in Table 6.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 96-15-97298).

## References

- Non-aqueous Solvent Systems, Ed. T. C. Waddington, Academic Press, London—New York, 1965.
- 2. D. A. Fine, J. Am. Chem. Soc., 1962, 84, 1139.
- S. A. Shchukarev and O. A. Lobaneva, *Dokl. Akad. Nauk SSSR*, 1955, 105, 741 [*Dokl. Chem.*, 1955, 105 (Engl. Transl.)].
- L. I. Katzin, J. R. Ferrado, and E. Gebert, J. Am. Chem. Soc., 1950, 72, 5471.
- E. I. Matrosov, Z. A. Starikova, A. I. Yanovsky, D. I. Lobanov, I. M. Aladzheva, O. V. Bykhovskaya, Yu. T. Struchkov, T. A. Mastryukova, and M. I. Kabachnik, J. Organomet. Chem., 1997, 535, 121.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th Ed., J. Wiley and Sons, New York—Chichester—Brisbane—Toronto—Singapore, 1986.
- F. A. Miller and C. H. Wilkins, Anal. Chem., 1952, 24, 1253.
- S. O. Grim and J. D. Mitchell, *Inorg. Chem.*, 1977, 16, 1762.
- Structure Correlation, Eds. H.-B. Burgi and J. D. Dunitz, VCH, Weinheim-New York, 1994, 2, 780 pp.
- H. D. Flack and D. Schwarzenbach, Acta Crystallogr., 1988, A44, 449.
- 11. H. D. Flack, Acta Crystallogr., 1983, A39, 876.

Received December 19, 1997; in revised form April 2, 1998